不同生长阶段毛苔草地下部分对水文情势的生长响应
Responses of Carex lasiocarpa Underground Part to Water Regimes at Different Growth Stages
DOI: 10.12677/WJF.2016.52002, PDF, HTML, XML, 下载: 1,940  浏览: 5,066  国家自然科学基金支持
作者: 王 丽*:中国科学院东北地理与农业生态研究所,吉林 长春;西安建筑科技大学环境与市政工程学院,陕西 西安
关键词: 水文情势根茎及不定根沼泽湿地Water Regimes Rhizome and Adventitious Roots Marsh Wetland
摘要: 通过幼苗移植水位控制试验,研究了毛苔草地下部分对不同水文情势的生长响应,同时比较研究了水文情势在其不同生活史阶段的影响。结果表明,−5 cm水位条件下,毛苔草根茎最长,持续淹水条件下,毛苔草根茎伸展最快;后期水分充足有力于根茎伸展,但无法超越苗期水文影响;稳定水文条件的改变抑制根茎生长,而从波动水文情势到稳定水文环境的转变,则促进根茎生长。毛苔草不定根长度,旺盛期,随水分条件的增加而变小;后期,在持续淹水条件下伸展较快,但−5 cm水位条件下的仍然最长。
Abstract: The characters of C. lasiocarpa underground part were studied to find its responses to different water regimes and growth strategies through different water experiences. The main conclusions were as follows: rhizome was longest at −5 cm water level and stretched fastest under constant flooding. Sufficient water at the later growing period was favorable for rhizome stretching, but could not compensate the inhibition of seeding stage water regimes. Changes of stable water re-gimes inhibited rhizome growth, and changes from fluctuating regime to stable ones promoted its growth. Adventitious roots length increased as the water decreased in the thriving growth period, and increased fast later under constant flooding, but was still longest at −5 cm water level.
文章引用:王丽. 不同生长阶段毛苔草地下部分对水文情势的生长响应[J]. 林业世界, 2016, 5(2): 7-13. http://dx.doi.org/10.12677/WJF.2016.52002

参考文献

[1] Mitsch, W.J. and Gosselink, J.G. (2002) Wetlands. Van Nostrand Reinhold Company, New York.
[2] Ebrahimi, K., Falconer, R.A. and Lin, B. (2007) Flow and Solute Fluxes in Integrated Wetland and Coastal Systems. Environmental Modelling & Software, 22, 1337-1348. http://dx.doi.org/10.1016/j.envsoft.2006.09.003
[3] 叶春, 吴桂平, 赵晓松, 王晓龙, 刘元波. 鄱阳湖国家级自然保护湿地植被的干旱响应及影响因素[J]. 湖泊科学, 2014, 26(2): 253-259.
[4] Burton, M., Marsh, S. and Patterson, J. (2007) Community Attitudes towards Water Management in the Moore Catchment, Western Australia. Agricultural Systems, 92, 157-178. http://dx.doi.org/10.1016/j.agsy.2006.03.004
[5] Brazner, J.C., Danz, N.P., Niemi, G.J., Regal, R.R., Trebitz, A.S., Howe, R.W., Hanowski, J.M., Johnson, L.B., Ciborowski, J.J.H., Johnston, C.A., Reavie, E.D., Brady, V.J. and Sgro, G.V. (2007) Evaluation of Geographic, Geomorphic and Human Influences on Great Lakes Wetland Indicators: A Multi-Assemblage Approach. Ecological Indicators, 7, 610- 635. http://dx.doi.org/10.1016/j.ecolind.2006.07.001
[6] Fraser, L.H. and Karnezis, J.P. (2005) A Comparative Assessment of Seedling Survival and Biomass Accumulation for Fourteen Wetland Plant Species Grown under Minor Water-Depth Differences. Wetland, 25, 520-530. http://dx.doi.org/10.1672/0277-5212(2005)025[0520:ACAOSS]2.0.CO;2
[7] Horsák, M., Hájek, M., Tichý, L. and Juřičková, L. (2007) Plant Indicator Values as a Tool for Land Mollusc Autecology Assessment. Acta Oecologica, 32, 161-171. http://dx.doi.org/10.1016/j.actao.2007.03.011
[8] Ernst, K.A. and Brooks, R.J. (2003) Prolonged Flooding Decreased Stem Density, Tree Size and Shifted Composition towards Clonal Species in a Central Florida Hardwood Swamp. Forest Ecology and Management, 173, 261-279. http://dx.doi.org/10.1016/S0378-1127(02)00004-X
[9] Ahna, C., Mosera, K.F., Sparksb, R.E. and White, D.C. (2007) Developing a Dynamic Model to Predict the Recruitment and Early Survival of Black Willow (Salix nigra) in Response to Different Hydrologic Conditions. Ecological Modeling, 204, 315-325. http://dx.doi.org/10.1016/j.ecolmodel.2007.01.006
[10] Middleton, B.A., van der Valk, A.G. and Davis, C.B. (2015) Responses to Water Depth and Clipping of Twenty-Three Plant Species in an Indian Monsoonal Wetland. Aquatic Botany, 126, 38-47. http://dx.doi.org/10.1016/j.aquabot.2015.06.004
[11] Bakker, C., van Bodegom, P.M., Nelissen, H.J.M., Aerts, R. and Ernst, W.H.O. (2007) Preference of Wet Dune Species for Waterlogged Conditions Can Be Explained by Adaptations and Specific Recruitment Requirements. Aquatic Botany, 86, 37-45. http://dx.doi.org/10.1016/j.aquabot.2006.08.005
[12] Pausas, J.G. and Sandra, L. (2003) A Hierarchical Deductive Approach for Functional Types in Disturbed Ecosystems. Journal of Vegetation Science, 14, 409-416. http://dx.doi.org/10.1111/j.1654-1103.2003.tb02166.x
[13] Ringrosea, S., Vanderposta, C., Mathesonb, W., Wolski, P., Huntsman-Mapila, P. and Jellema, A. (2007) Indicators of Desiccation-Driven Change in the Distal Okavango Delta, Botswana. Journal of Arid Environments, 68, 88-112. http://dx.doi.org/10.1016/j.jaridenv.2006.03.030
[14] 刘兴土, 马学慧, 吕宪国. 湿地及其变化[M]//刘兴土, 马学慧. 三江平原自然环境变化与生态保育. 北京: 科学出版社, 2002.
[15] 刘兴土. 三江平原沼泽湿地的蓄水与调洪功能[J]. 湿地科学, 2007, 5(1): 64-68.
[16] 易富科, 李崇浩, 赵魁义, 等. 三江平原植被类型研究[M]//黄锡畴, 主编. 中国沼泽研究. 长春: 科学出版社, 1988: 162-171.
[17] Zhang, L.H., Song, C.C., Wang, D.X. and Wang, Y.Y. (2007) Effects of Exogenous Nitrogen on Freshwater Marsh Plant Growth and N2O Fluxes in Sanjiang Plain, Northeast China. Atmospheric Environment, 41, 1080-1090. http://dx.doi.org/10.1016/j.atmosenv.2006.09.029
[18] 武高林, 杜国桢. 植物形态生长对策研究进展[J]. 世界科技研究与发展, 2007, 29(4): 47-51.
[19] 朱志红, 李希来, 乔有明, 等. 克隆植物矮嵩草在放牧选择压力下的风险分散对策研究[J]. 草业科学, 2004, 21(12): 62-68.
[20] 赵魁义. 中国沼泽志[M]. 北京: 科学出版社, 1999: 55-56.
[21] 朱志红, 刘建秀, 王孝安. 克隆植物的表型可塑性与等级选择[J]. 植物生态学报, 2007, 31(4): 588-598.
[22] 宋明华, 董鸣, 蒋高明, 等. 东北样带上的克隆植物及其重要性与环境的关系[J]. 生态学报, 2001, 21(7): 1095- 1103.