具有时滞的生态传染病系统的稳定性分析
Stability of an Eco-Epidemiological System with Delay
DOI: 10.12677/OJNS.2016.42012, PDF, HTML, XML, 下载: 1,918  浏览: 4,038 
作者: 龚天蓉, 赵维锐:武汉理工大学,湖北 武汉
关键词: 时滞稳定性Hopf分支生态传染病系统Delay Stability Hopf Bifurcation Eco-Epidemiological System
摘要: 本文考虑了疾病在食饵种群中传播和具有Holling II型功能反应的时滞生态系统,主要分析时滞对系统局部稳定性的影响。当时滞不存在时,系统在内部平衡点处是局部渐近稳定的;但随着时滞 τ 的逐渐增加并超过临界值时,系统由稳定状态变为不稳定且产生Hopf分支,从而得到了Hopf分支的存在条件,最后利用数值模拟来验证所得结论。这些结论预测了疾病在种群间的发展趋势,并为控制疾病在种群间传播提供了可靠的理论依据。
Abstract: In this paper, a delayed eco-epidemiological system with a disease in prey is considered. Its dy-namics of stability and the effect of delay on this system have been studied. The system without delay is locally asymptotically stable at the internal equilibrium point. With the delay gradually increasing, the system will be unstable and occurHopf bifurcation. Finally, the numerical simula-tion is carried out to verify the conclusions. These results can predict the trend of the populations with disease, and provide a reliable theoretical basis for controlling the spread of disease in populations.
文章引用:龚天蓉, 赵维锐. 具有时滞的生态传染病系统的稳定性分析[J]. 自然科学, 2016, 4(2): 103-109. http://dx.doi.org/10.12677/OJNS.2016.42012

参考文献

[1] Sasmal, S.K. and Chattopadhyay, J. (2013) An Eco-Epidemiological System with Infected Prey and Predator Subject to the Weak Allee Effect. Mathematical Biosciences, 246, 260-271.
http://dx.doi.org/10.1016/j.mbs.2013.10.005
[2] Biswas, S., Sasmal, S.K. and Samanta, S. (2015) A Delay Eco-Epidemiological System with Infected Prey and Predator Subject to the Weak Allee Effect. Mathematical Biosciences, 263, 198-208.
http://dx.doi.org/10.1016/j.mbs.2015.02.013
[3] Yuan, S.L. and Zhang, F.Q. (2010) Stability and Global Hopf Bifurcation in a Delayed Predator-Prey System. Nonlinear Analysis: Real World Applications, 11, 959-977.
http://dx.doi.org/10.1016/j.nonrwa.2009.01.038
[4] Song, Y.L., Han, M.A. and Wei, J.J. (2005) Stability and Hopf Bifurcation Analysis on a Simplified BAM Neural Network with Delays. Physica D, 200, 185-204.
http://dx.doi.org/10.1016/j.physd.2004.10.010
[5] Song, Y.L. and Wei, J.J. (2005) Local Hopf Bifurcation and Global Periodic Solutions in a Delayed Predator-Prey System. Journal of Mathematical Analysis and Applications, 301, 1-21.
http://dx.doi.org/10.1016/j.jmaa.2004.06.056
[6] Hu, G.P. and Li, X.L. (2012) Stability and Hopf Bifurcation for a Delayed Predator-Prey Model with Disease in the Prey. Chaos, Solitons & Fractals, 45, 229-237.
http://dx.doi.org/10.1016/j.chaos.2011.11.011
[7] Kang, A., Xue, Y. and Jin, Z. (2008) Dynamic Behavior of an Eco-Epidemic System with Impulsive Birth. Journal of Mathematical Analysis and Applications, 45, 783-795.
http://dx.doi.org/10.1016/j.jmaa.2008.04.043
[8] Zhang, J.F., Li, W.T. and Yan, X.P. (2008) Hopf Bifurcation and Stability of Periodic Solution in a Delayed Eco- Epidemiological System. Applied Mathematics and Computation, 198, 865-876.
http://dx.doi.org/10.1016/j.amc.2007.09.045
[9] Peterson, R.O. and Page, R.E. (1987) Wolf Density as a Perdictor of Predation Rate. Swedish Wildlife Research, 1, 771.
[10] Hale, J.K. (1977) Theory of Functional Differential Equations. Springer-Verlag, Berlin.
http://dx.doi.org/10.1007/978-1-4612-9892-2