欠驱动单杠体操机器人研究综述
A Survey on Research of the Underactuated Horizontal Bar Gymnastic Robot
DOI: 10.12677/DSC.2016.52006, PDF, HTML, XML, 下载: 2,171  浏览: 8,140  国家科技经费支持
作者: 刘大生, 颜国正:上海交通大学电子信息与电气工程学院医学精密工程及智能系统研究所,上海
关键词: 体操机器人欠驱动控制策略非线性系统Gymnastic Robot Underactuated Control Strategy Nonlinear System
摘要: 体操机器人是非线性、强耦合、多状态的欠驱动系统,且在稳摆区域属于自然不稳定系统,这类系统能反映出许多控制领域的关键问题,国内外许多学者投身于体操机器人的控制研究。本文综述了国内外有关欠驱动单杠体操机器人的研究现状,分析和讨论了体操机器人在动力学建模及运动控制研究方面的理论与方法,具体分析了体操机器人的摆起、平衡、加速及大回环运动的主要控制方法,对存在的问题进行了讨论,并对未来的发展趋势进行了展望。
Abstract: The gymnastic robot is a nonlinear, strongly coupled, multi-state underactuated system and be- longs to the natural unstable systems in the stable region. This kind of system can reflect the key problems of many control areas, and a lot of scholars have devoted themselves to the research of controlling the gymnastic robot. This paper reviews the domestic and foreign research on the horizontal bar gymnastic robot. In the paper, the relevant theories and methods of the research on the dynamic modeling and motion control of the gymnastic robot are analyzed and discussed, the control on the swing up, balance, acceleration and giant-swing motion movement of the gymnastic robot is analyzed in detail, furthermore, the existing problems are discussed, and the development trend in the future is prospected.
文章引用:刘大生, 颜国正. 欠驱动单杠体操机器人研究综述[J]. 动力系统与控制, 2016, 5(2): 48-60. http://dx.doi.org/10.12677/DSC.2016.52006

参考文献

[1] 郑艳, 朱媛, 井元伟. 一类欠驱动机械系统基于滑模的变结构控制[J]. 东北大学学报, 2005(6): 511-514.
[2] Martínez, S., Cortés, J. and Bullo, F. (2003) Motion Planning and Control Problems for Underactuated Robots. In: Bicchi, A., Prattichizzo, D., Christensen, H., Eds., Control Problems in Robotics, Springer, Berlin, Heidel-berg, 59-74.
[3] 陈炜, 余跃庆, 张绪平. 欠驱动机器人研究综述[J]. 机械设计与研究, 2005(4): 22-26.
[4] Spong M. (1998) Underactuated Mechanical Systems. In: Siciliano, B. and Valavanis, K., Eds., Control Problems in Robotics and Automation, Springer, Berlin, Heidelberg, 135-150.
[5] Oriolo, G. and Nakamura, Y. (1991) Control of Mechanical Systems with Second-Order Nonholonomic Constraints: Underactuated Manipulators. Brighton, 2398-2403.
[6] 张安彩, 赖旭芝, 佘锦华, 等. 基于倒转方法的欠驱动Acrobot系统稳定控制[J]. 自动化学报, 2012(8): 1263- 1269.
[7] 赖旭芝, 潘昌忠, 吴敏. 一类欠驱动机械系统的全局鲁棒控制[J]. 控制与决策, 2009(7): 1023-1027.
[8] 郝建豹, 洪志杰. 三关节欠驱动体操机器人的LQR倒立平衡控制[J]. 机电工程技术, 2009(6): 38-40.
[9] Takashima, S. (1991) Control of Gymnast on a High Bar. IEEE/RSJ International Workshop on Intelligent Robots and Systems’91, Intelligence for Mechanical Systems, Proceedings IROS’91, Osaka, 3-5 November 1991, 1424-1429.
http://dx.doi.org/10.1109/iros.1991.174707
[10] Nakawaki, D., Sangwan, J. and Miyazaki, F. (1998) Dynamic Modeling Approach to Gymnastic Coaching. IEEE International Conference on Robotics and Automation, Leuven, 16-20 May 1998, 1069-1076.
http://dx.doi.org/10.1109/robot.1998.677232
[11] 赖旭芝, 黄灿. 体操机器人控制的李雅普诺夫方法[J]. 计算技术与自动化, 2004, 23(2): 4-7.
[12] Zhang, X.H., Chen, H.T., Zhao, Y.N. and Gao, B. (2009) The Dynamical Servo Control Problem for the Acrobot Based on Virtual Constraints Approach. 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, 10-15 October 2009, 1320-1325.
http://dx.doi.org/10.1109/IROS.2009.5354570
[13] Takashima, S. (1990) Dynamic Modeling of a Gymnast on a High Bar-Computer Simulation and Construction of a Gymnast Robot. IEEE International Workshop on Intelligent Robots and Systems ’90, “Towards a New Frontier of Applications”, IROS ’90, Ibaraki, 3-6 July 1990, 955-962.
http://dx.doi.org/10.1109/iros.1990.262519
[14] Bortoff, S.A. and Spong, M.W. (1992) Pseudolinearization of the Acrobot Using Spline Functions. Proceedings of the 31st IEEE Conference on Decision and Control, Tucson, 16-18 December 1992, 593-598.
http://dx.doi.org/10.1109/cdc.1992.371658
[15] Hauser, J. and Murray, R.M. (1990) Nonlinear Controllers for Non-Integrable Systems: The Acrobot Example. 1990 American Control Conference, San Diego, 23-25 May 1990, 669-671.
[16] Dejong, G. and Spong, M.W. (1994) Swinging up the Acrobot: An Example of Intelligent Control. 1994 American Control Conference, Baltimore, 29 June-1 July 1994, 2158-2162.
http://dx.doi.org/10.1109/acc.1994.752458
[17] Spong, M.W. (1994) Swing up Control of the Acrobot. 1994 IEEE International Conference on Robotics and Automation, San Diego, 8-13 May 1994, 2356-2361.
http://dx.doi.org/10.1109/robot.1994.350934
[18] Spong, M.W. (1995) The Swing up Control Problem for the Acrobot. IEEE Control Systems, 15, 49-55.
http://dx.doi.org/10.1109/37.341864
[19] Brown, S. and Passino, K. (1997) Intelligent Control for an Acrobot. Journal of Intelligent and Robotic Systems, 18, 209-248.
http://dx.doi.org/10.1023/A:1007953809856
[20] Xin, X. and Kaneda, M. (2001) A New Solution to the Swing up Control Problem for the Acrobot. Proceedings of the 40th SICE Annual Conference, International Session Papers, SICE 2001, Nagoya, 25-27 July 2001, 124-129.
http://dx.doi.org/10.1109/sice.2001.977819
[21] Xin, X. and Kaneda, M. (2002) The Swing up Control for the Acrobot Based on Energy Control Approach. Proceedings of the 41st IEEE Conference on Decision and Control, Las Vegas, 10-13 December 2002, 3261-3266.
http://dx.doi.org/10.1109/cdc.2002.1184374
[22] Xin, X. and Kaneda, M. (2004) New Analytical Results of the Energy Based Swinging up Control of the Acrobot. 43rd IEEE Conference on Decision and Control, Nassau, 17-17 December 2004, 704-709.
http://dx.doi.org/10.1109/cdc.2004.1428728
[23] 郑艳, 井元伟. Acrobot系统基于滑模的离散时间变结构控制[J]. 东北大学学报: 自然科学版, 2006, 27(6): 591-594.
[24] 郑艳, 郑秀萍, 褚俊霞, 井元伟. 基于T-S模型的体操机器人系统模糊变结构控制[J]. 控制与决策, 2006, 21(1): 34-37.
[25] 谢衡, 牛秦洲. 一类欠驱动机械系统基于神经网络的控制[J]. 科学技术与工程, 2009, 9(7): 1720-1724.
[26] 赖旭芝, 蔡自兴, 吴敏, 佘锦华. 体操机器人的模糊控制策略(英文)[J]. 控制理论与应用, 2000, 17(3): 326-330.
[27] 赖旭芝, 蔡自兴, 吴敏. 一类欠驱动机械系统的模糊与变结构控制[J]. 自动化学报, 2001, 27(6): 850-854.
[28] 李祖枢, 谭智, 张华, 王育新, 谢健. 三关节单杠体操机器人的倒立稳定控制[C]//中国自动化学会控制理论专业委员会. 第二十三届中国控制会议论文集(下册). 北京: 中国自动化学会控制理论专业委员会, 2004: 5.
[29] 李祖枢, 张华, 古建功, 陈桂强. 3关节单杠体操机器人的动力学参数辨识[J]. 控制理论与应用, 2008, 25(2): 242-246.
[30] Mettin, U., La Hera, P., Freidovich, L. and Shiriaev, A. (2007) Generating Human-Like Motions for an Underactuated Three-Link Robot Based on the Virtual Constraints Approach. 2007 46th IEEE Conference on Decision and Control, New Orleans, 12-14 December 2007, 5138-5143.
http://dx.doi.org/10.1109/cdc.2007.4434799
[31] Xin, X. and Kaneda, M. (2007) Swing-Up Control for a 3-DOF Gymnastic Robot with Passive First Joint: Design and Analysis. IEEE Transactions on Robotics, 23, 1277-1285.
http://dx.doi.org/10.1109/TRO.2007.909805
[32] 薛方正, 郭亿, 李祖枢. 加速度驱动型三关节体操机器人的动力学建模与分析[J]. 控制与决策, 2011, 26(6): 821-825.
[33] Xie, J. and Li, Z. (2003) Dynamic Model and Motion Control Analysis of Three-Link Gymnastic Robot on Horizontal bar. Proceedings of the 2003 IEEE International Conference on Robotics, Intelligent Systems and Signal Processing, Changsha, 8-13 October 2003, 83-87.
[34] 张华, 李祖枢, 古建功, 陈桂强, 谭智. 三连杆单杠体操机器人的仿人智能运动控制[J]. 重庆大学学报(自然科学版), 2007, 30(3): 74-78.
[35] Xin, X., She, J.-H. and Yamasaki, T. (2008) Swing-Up Control for n-Link Planar Robot with Single Passive Joint Using the Notion of Virtual Composite Links. 47th IEEE Conference on Decision and Control, Cancun, 9-11 December 2008, 4339-4344.
http://dx.doi.org/10.1109/cdc.2008.4738922
[36] Lai, X.-Z., She, J.-H., Yang, S.X. and Wu, M. (2006) Unified Treatment of Motion Control of Underactuated Two-Link Manipulators. 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, 9-15 October 2006, 574-579.
http://dx.doi.org/10.1109/IROS.2006.282396
[37] Xin, X. and Kaneda, M. (2007) Design and Analysis of Swing-Up Control for a 3-Link Gymnastic Robot with Passive First Joint. 2007 46th IEEE Conference on Decision and Control, New Orleans, 12-14 December 2007, 1923-1928.
http://dx.doi.org/10.1109/CDC.2007.4434298
[38] Henmi, T., Wada, T., Deng, M.C., Inoue, A., Ueki, N. and Hirashima, Y. (2004) Swing-Up Control of an Acrobot Having a Limited Range of Joint Angle of Two Links. 5th Asian Control Conference, Melbourne, 20-23 July 2004, 1071-1076.
[39] Michitsuji, Y., Sato, H. and Yamakita, M. (2001) Giant Swing via forward upward Circling of the Acrobat-Robot. Proceedings of the 2001 American Control Conference, 4, 3262-3267.
http://dx.doi.org/10.1109/acc.2001.946425
[40] Kobayashi, T., Komine, T., Suzuki, S., Iwase, M. and Furuta, K. (2002) Swing-Up and Balancing Control of Acrobot. Proceedings of the 41st SICE Annual Conference, 5, 3072-3075.
http://dx.doi.org/10.1109/sice.2002.1195597
[41] Banavar, R.N. and Mahindrakar, A.D. (2003) Energy-Based Swing-Up of the Acrobot and Time-Optimal Motion. Proceedings of 2003 IEEE Conference on Control Applications, 1, 706-711.
http://dx.doi.org/10.1109/cca.2003.1223524
[42] Kanazawa, M., Anami, R., Nakaura, S. and Sampei, M. (2007) Swing up Control Experiment Aimed at Energy Interaction between the Acrobot and Compliance. SICE 2007 Annual Conference, Takamatsu, 17-20 September 2007, 1236-1241.
http://dx.doi.org/10.1109/SICE.2007.4421173
[43] Xin, X. and Yamasaki, T. (2012) Energy-Based Swing-Up Control for a Remotely Driven Acrobot: Theoretical and Experimental Results. IEEE Transactions on Control Systems Technology, 20, 1048-1056.
http://dx.doi.org/10.1109/TCST.2011.2159220
[44] Smith, M.H., Zhang, T.H. and Gruver, W.A. (1998) Dynamic Fuzzy Control and System Stability for the Acrobot. The 1998 IEEE International Conference on Fuzzy Systems Pro-ceedings, IEEE World Congress on Computational Intelligence, Anchorage, 4-9 May 1998, 286-291.
http://dx.doi.org/10.1109/fuzzy.1998.687499
[45] Zheng, Y. and Jing, Y.-W. (2005) Fuzzy Variable Structure Control for Acrobot Based on T-S Model. 2005 IEEE International Conference Mechatronics and Automation, 2, 842-846.
http://dx.doi.org/10.1109/ICMA.2005.1626660
[46] Yonemura, T. and Yamakita, M. (2004) Swing up Control of Acrobot Based on Switched Output Functions. SICE 2004 Annual Conference, Sapporo, 4-6 August 2004, 1909-1914.
[47] Mathis, F.B., Jafari, R. and Mukherjee, R. (2011) Efficient Swing-Up of the Acrobot Using Continu-ous Torque and Impulsive Braking. Proceedings of the 2011 American Control Conference, San Francisco, 29 June-1 July 2011, 268-273.
http://dx.doi.org/10.1109/acc.2011.5991189
[48] Henmi, T., Deng, M.C. and Inoue, A. (2006) Swing-Up Control of the Acrobot Using a New Partial Linearization Controller Based on the Lyapunov Theorem. 2006 IEEE International Conference on Networking, Sensing and Control, Ft. Lauderdale, 23-25 April 2006, 60-65.
http://dx.doi.org/10.1109/ICNSC.2006.1673118
[49] Lai, X.Z., She, J.H., Yang, S.X. and Wu, M. (2008) Control of Acrobot Based on Non-Smooth Lyapunov Function and Comprehensive Stability Analysis. IET Control Theory & Applications, 2, 181-191.
http://dx.doi.org/10.1049/iet-cta:20060414
[50] Xue, F.Z., Hou, Z.C. and Deng, H.J. (2011) Balance Control for an Acrobot. 2011 Chinese Control and Decision Conference (CCDC), Mianyang, 23-25 May 2011, 3426-3429.
http://dx.doi.org/10.1109/CCDC.2011.5968708
[51] Yamaura, H. and Yanai, M. (2006) A Realization Method of Giant-Swing Motions of a 3-DOF Link Mechanism. Transactions of the Japan Society of Mechanical Engineers C, 72, 2812-2820.
http://dx.doi.org/10.1299/kikaic.72.2812
[52] Matsuoka, K., Ohyama, N., Watanabe, A. and Ooshima, M. (2006) A Giant Swing Robot Using a Neural Oscillator. International Congress Series, 1291, 153-156.
http://dx.doi.org/10.1016/j.ics.2005.12.074
[53] Ono, K., Yamamoto, K. and Imadu, A. (2001) Control of Giant Swing Motion of a Two-Link Horizontal Bar Gymnastic Robot. Advanced Robotics, 15, 449-465.
http://dx.doi.org/10.1163/156855301750398356
[54] Liu, D. and Yamaura, H. (2011) Giant Swing Motion Con-trol of 3-Link Gymnastic Robot with Friction around an Underactuated Joint. Journal of System Design and Dynamics, 5, 925-936.
http://dx.doi.org/10.1299/jsdd.5.925
[55] Liu, D., Yan, G. and Yamaura, H. (2014) Dynamic Delayed Feedback Control for Stabilizing the Giant Swing Motions of an Underactuated Three-Link Gymnastic Robot. Nonlinear Dynamics, 78, 147-161.
http://dx.doi.org/10.1007/s11071-014-1428-8
[56] Henmi, T., Chujo, M., Ohta, Y. and Deng, M. (2014) Repro-duction of Swing-Up and Giant Swing Motion of Acrobot Based on a Technique of the Horizontal Bar Gymnast. 2014 11th World Congress on Intelligent Control and Automation (WCICA), Shenyang, 29 June-4 July 2014, 2613-2618.
http://dx.doi.org/10.1109/wcica.2014.7053137