La0.7Sr0.3MnO3/xZn0.95Co0.05O复合体系的电磁输运特性
Electromagnetic Transport Properties of La0.7Sr0.3MnO3/xZn0.95Co0.05OComposite
DOI: 10.12677/APP.2016.64011, PDF, HTML, XML, 下载: 1,939  浏览: 4,536  国家自然科学基金支持
作者: 庄 彬*, 霍冠忠, 熊力群, 陈水源, 林应斌, 黄志高:福建师范大学物理与能源学院,福建省量子调控与新能源材料重点实验室,福建 福州
关键词: La0.7Sr0.3MnO3Zn0.95Co0.05O边界材料复合体系磁电输运La0.7Sr0.3MnO3 Zn0.95Co0.05O Boundary Materials Composite Electromagnetic Transport
摘要: 选取高居里温度(Tc约350 K)、高自旋极化率的La0.7Sr0.3MnO3为磁性相,弱磁性的稀磁半导体材料Zn0.95Co0.05O作为边界材料,采用溶胶-凝胶法制备La0.7Sr0.3MnO3:xZn0.95Co0.05O (x = 0.0, 0.1, 0.2, 0.3, 0.4 mol)复合体系。对样品的结构、电磁输运特性测量结果分析表明,边界材料对磁电阻的影响显著,x值增大导致磁电阻增加;当加上小磁场后,出现了低场下的高磁电阻。
Abstract: Selecting high Curie temperature (Tc = 350 K) and high spin polarization La0.7Sr0.3MnO3 as mag-netic phase, weak magnetic dilute magnetic semiconductor materials Zn0.95Co0.05O as border material, La0.7Sr0.3MnO3:xZn0.95Co0.05O (x = 0.0, 0.1, 0.2, 0.3, 0.4 mol) composite was prepared by sol- gel method. The results measuring crystal structure and electromagnetic transport properties indicated that, boundary materials have effect on the magnetic resistance significantly; magnetic resistance increases with the x value; with small magnetic field, the low field's high magnetic resistance exists.
文章引用:庄彬, 霍冠忠, 熊力群, 陈水源, 林应斌, 黄志高. La0.7Sr0.3MnO3/xZn0.95Co0.05O复合体系的电磁输运特性[J]. 应用物理, 2016, 6(4): 77-82. http://dx.doi.org/10.12677/APP.2016.64011

参考文献

[1] Coey, J.M.D., Berkowitz, A.E., Balcells, L., et al. (1998) Magnetoresistance of Magnetite. Applied Physics Letters, 72, 734-736. http://dx.doi.org/10.1063/1.120859
[2] Naftalis, N., Bason, Y., Hoffman, J., et al. (2009) Anisotropic Magnetoresistance and Planar Hall Effect in Epitaxial Films of La0.7Ca0.3MnO3. Applied Physics Letters, 106, Article ID: 023916.
[3] Thiele, C., DÖrr, K., Bilani, O., et al. (2007) Influence of Strain on the Magnetization and Magnetoelectric Effect in La0.7A0.3MnO3/PMN-PT(001) (A=Sr, Ca). Physical Review B, 75, Article ID: 054408. http://dx.doi.org/10.1103/PhysRevB.75.054408
[4] Chen, S.Y., Ye, Q.Y., Wang, D.H., et al. (2011) Effect of Electric Field on Magneto-Transport Properties in La2/3 (Ca0.6Ba0.4)1/3MnO3/Pb(Zr0.52Ti0.48)O3 Laminated Composite. Journal of Applied Physics, 109, Article ID: 07D723.
[5] Das, D., Choury, P., Das, R.N., et al. (2002) Solution Sol-Gel Processing and Investigation of Percolation Threshold in La2/3Ca1/3MnO3:xSiO2 Nanocomposite. Journal of Magnetism and Magnetic Materials, 238, 178-184. http://dx.doi.org/10.1016/S0304-8853(01)00859-9
[6] Barcells, L., Carrillo, A.E., Martinez, B., et al. (1999) En-hanced Field Sensitivity Close to Percolation in Magnetoresistive La2/3Sr1/3MnO3/CeO2 Composites. Applied Physics Letters, 74, 4014-4016. http://dx.doi.org/10.1063/1.123245
[7] Kameli, P., Salamati, H., Eshraghi, M., et al. (2005) The Effect of TiO2 Doping on the Structure and Magnetic and Magnetotransport Properties of La0.75Sr0.25MnO3 Composite. Applied Physics Letters, 98, 43904-43908.
[8] Lei, L.W., Fu, Z.Y., Zhang, J.Y., et al. (2006) Synthesis and Low Field Transport Properties in a ZnO-Doped La0.67Ca0.33MnO3 Composites. Materials Science and Engineering: B, 128, 70-74. http://dx.doi.org/10.1016/j.mseb.2005.11.023
[9] Huang, Y.H., Yan, C.H., Luo, F., et al. (2002) Large Enhancement in Room-Temperature Magnetoresistance and Dramatic Decrease in Resistivity in La0.7Ca0.3MnO3-Ag Composites. Applied Physics Letters, 81, 76-78. http://dx.doi.org/10.1063/1.1491029
[10] Yuan, X.B., Liu, Y.H., Wang, C.J., et al. (2006) Electronic Transport and Extra Large Magnetoresistance in LCBMO/ Pdx Composites. Journal of Physics D, 39, 1028-1033. http://dx.doi.org/10.1088/0022-3727/39/6/006
[11] Wu, Q.Y., Chen, Z.G., Wu, R., et al. (2007) First-Principles and Monte Carlo Combinational Study on Zn1−xCoxO Diluted Magnetic Semiconductor. Solid State Communications, 142, 242-246. http://dx.doi.org/10.1016/j.ssc.2007.01.048
[12] Dietl, T., Ohno, H., Matsukura, F., et al. (2000) Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors. Science, 287, 1019. http://dx.doi.org/10.1126/science.287.5455.1019
[13] Huang, Z.G., Chen, Z.G., Peng, K., Wang, D.H., Zhang, F.M., Zhang, W.Y. and Du, Y.W. (2004) Monte Carlo Simulation of Tunneling Magnetoresistance in Nanostructured Materials. Physical Review B, 69, Article ID: 094420, 7 p.
[14] deAndres, A., Garcia-Hernandez, M., Martinez, J.L. and Prieto, C. (1999) Low-Temperature Magnetoresistance in Polycrystalline Manganites: Connectivity versus Grain Size. Applied Physics Letters, 74, 3884-3886. http://dx.doi.org/10.1063/1.124212
[15] .Ju, H.L., Gopalakrishnan, J., Peng, J.L., Li, Q., Xiong, G.C., Venkatesan, T. and Greene, R.L. (1995) Dependence of Giant Magnetoresistance on Oxygen Stoichiometry and Magnetization in Polycrystalline La0.67Ba0.33MnO3. Physical Review B, 51, 6143-6145. http://dx.doi.org/10.1103/PhysRevB.51.6143
[16] Schiffer, P., Ramirez, A.P., Bao, W. and Cheong, S.W. (1995) Low Temperature Magnetoresistance and the Magnetic Phase Diagram of La1−xCaxMnO3. Physical Review Letters, 75, 3336-3338. http://dx.doi.org/10.1103/PhysRevLett.75.3336