铜银双金属纳米材料的绿色制备及电化学性能研究
Facile and Eco-Friendly Fabrication of Cu-Ag Bimetallic Nanocry stallites and Their Electrochemical Activities
DOI: 10.12677/AMC.2016.42002, PDF, HTML, XML, 下载: 2,943  浏览: 8,558  科研立项经费支持
作者: 杨春梅, 李 庆*, 王子润, 林 华, 覃礼钊, 聂 明, 谢桂起:西南大学材料与能源学部,重庆
关键词: 铜银双金属紫外可见吸收光谱电化学性能Bimetallic Cu-Ag Ultraviolet-Visible Spectrum Electrochemical Property
摘要: 本文在室温下采用绿色环保的液相还原法,以乙酸铜和硝酸银为产物前驱体,抗坏血酸为还原剂,β-环糊精为表面活性剂,制备铜银双金属纳米粒子。用X射线衍射仪(XRD)、场发射扫描电子显微镜(FESEM)、能量色散X射线能谱(EDS)、X射线光电子能谱分析仪(XPS)、紫外–可见分光光度计和电化学工作站对样品的结构、微观形貌、光学性质及电催化性质进行了表征。结果表明,随着反应时间的变化制备的铜银双金属纳米粒子的紫外光谱和电催化性能发生相应改变。
Abstract: Cu-Ag bimetallic nanocrystallites were prepared by using a green and convenient approach. In this experiment, ascorbic acid (working as a reducing agent) reduced cupric acetate monohydrate (Cu(CH3COO)2•H2O) and silver nitrate (AgNO3) to Cu-Ag bimetallic particles. X-ray powder diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive spectrometer (EDS) and X-ray photoelectron spectroscopy (XPS) were used to characterize the as-obtained products. The electrochemical properties of Cu-Ag nanocyrstallites were also explored. The results revealed that the as-prepared Cu-Ag could be a promising candidate for wide range of electrochemical applications.
文章引用:杨春梅, 李庆, 王子润, 林华, 覃礼钊, 聂明, 谢桂起. 铜银双金属纳米材料的绿色制备及电化学性能研究[J]. 材料化学前沿, 2016, 4(2): 9-19. http://dx.doi.org/10.12677/AMC.2016.42002

参考文献

[1] Wang, A.Q., Hsieh, Y., Chen, Y.F., et al. (2006) Au-Ag Alloy Nanoparticle as Catalyst for CO Oxidation: Effect of Si/Al Ratio of Mesoporous Support. Journal of Catalysis, 237, 197- 206.
http://dx.doi.org/10.1016/j.jcat.2005.10.030
[2] Liu, X.Y., Wang, A.Q., Wang, X.D., et al. (2008) Au-Cu Alloy Nanoparticles Confined in BA-15 as a Highly Efficient Catalyst for CO Oxidation. Chemical Communications, 27, 3187- 3189.
[3] Ang, T.P. and Chin, W.S. (2005) Dodecanethiol-Protected Copper/Silver Bimetallic Nanoclusters and Their Surface Properties. The Journal of Physical Chemistry B, 109, 22228-22236.
http://dx.doi.org/10.1021/jp053429r
[4] Latif-ur-Rahman, Afzal, S., Rumana Q., Sher, B.K., Abdullah, M.A., Anwar, A.S. and Muhammad, I. (2015) Spectroscopic Analysis of Au-Cu Alloy Nanoparticles of Various Compositions Synthesized by a Chemical Reduction Method. Advances in Materials Science and Engineering, 2015, 1-8.
http://dx.doi.org/10.1155/2015/638629
[5] Masaharu, T., Nobuhiro, M. and Seongyop, L. (2006) Crystal Struc-tures and Growth Mechanisms of Au@Ag Core- Shell Nanoparticles prepared by the Microwave-Polyol Method. Crystal Growth & Design, 8, 1801-1807.
[6] Zhu, X.R., Wang, C.M., Fu, Q.B., Jiao, Z., Wang, W.D., Qin, G.Y. and Xue, J.M. (2015) Preparation of Ag/Cu Janus nanowires: Electrodeposition in track-Etched Polymer Templates. Nuclear Instruments and Methods in Physics Research B, 356-357, 57-61.
http://dx.doi.org/10.1016/j.nimb.2015.04.061
[7] Garcia-Gutierrez, D.I., Gutierrez-Wing, C.E., Giovanetti, L., et al. (2005) Temperature Effect on the Synthesis of Au-Pt Bimetallic Nanoparticles. The Journal of Physical Chemistry B, 109, 3813-3821.
[8] Chen, L.X., Zhao, W.F. and Jiao, Y.F. (2007) Characterization of Ag/Pt Core-Shell Nanoparticles by UV-Vis Absorption, Resonance Light-Scattering Techniques. Spectrochimica Acta, 68, 484-490.
http://dx.doi.org/10.1016/j.saa.2006.12.014
[9] Luechinger, N.A., Athanassiou, E.K. and Stark, W.J. (2008) Graphene-Stabilized Copper Nanoparticles as an Air- Stable Substitute for Silver and Gold in Low-Cost Ink-Jet Printable Electronics. Nanotechnology, 19, 445201.
http://dx.doi.org/10.1088/0957-4484/19/44/445201
[10] Tojo, T., Yamamoto, I., Zhang, Q.W. and Saito, F. (2005) Discharge Properties of Mg2Ni-Ni Alloy Synthesized by Mechanical Alloying. Advanced Powder Technology, 16, 649-658.
http://dx.doi.org/10.1163/156855205774483299
[11] Remita, H., Khatouri, J., Treguer, M., Amblard, J. and Belloni, J. (1997) Silver-Palladium Alloyed Clusters Synthesized Byradiolysis. Journal of Physics D, 40, 127-130.
[12] Huang, R. Wen, Y.H., Zhu, Z.Z. and Sun, S.G. (2012) Pt-Pd Bimetallic Catalysts: Structural and Thermal Stabilities of Core-Shell and Alloyed Nanoparticles. The Journal of Physical Chemistry C, 116, 8664-8671.
http://dx.doi.org/10.1021/jp3015639
[13] Lee, Y., Choi, J., Lee, K.J., Stott, N.E. and Kim, D. (2008) Large-Scale Synthesis of Copper Nanoparticles by Chemically Controlled Reduction for Application of Inkjet-Printed Electronics. Nanotechnology, 19, 415604.
http://dx.doi.org/10.1088/0957-4484/19/41/415604
[14] Saxena, A., Tripathi, R.M., Fahmina, Z. and Priti, S. (2012) Green Synthesis of Silver Nanoparticles Using Aqueous Solution of Ficus benghalensis Leaf Extract and Cha-racterization of Their Antibacterial Activity. Materials Letters, 67, 91-94.
http://dx.doi.org/10.1016/j.matlet.2011.09.038
[15] Jayachandra, R.N., Rani, R., Arvind, K.G. and Sudha, R.S. (2014) Biological Activities of Green Silver Nanoparticles Synthesized with Acorous Calamus Rhizome Extract. Eu-ropean Journal of Medicinal Chemistry, 85, 784-794.
http://dx.doi.org/10.1016/j.ejmech.2014.08.024
[16] Muzikansky, A., Nanikashvili, P., Grinblat, J. and Zitoun, D. (2013) Ag Dewetting in Cu@Ag Monodisperse Core- Shell Nanoparticles. The Journal of Physical Chemistry C, 117, 3093-3100.
http://dx.doi.org/10.1021/jp3109545
[17] Roosen, A.R. and Carter, W.C. (1998) Simulations of Mi-crostructural Evolution: Anisotropic Growth and Coarsening. Physica A: Statistical Mechanics and its Applications, 261, 232-247.
http://dx.doi.org/10.1016/S0378-4371(98)00377-X
[18] Luo, Y., Li, S., Ren, Q., Liu, J., Xing, L., Wang, Y., Yu, Y., Jia, Z. and Li, J. (2006) Facile Synthesis of Flowerlike Cu2O Nanoarchitectures by a Solution Phase Route. Crystal Growth & Design, 7, 87-92.
http://dx.doi.org/10.1021/cg060491k
[19] Yu, H.G., Liu, R., Wang, X.F., Wang, P. and Yu, J.G. (2012) Enhanced Visible-Light Photocatalytic Activity of Bi2WO6 Nanoparticles by Ag2O Cocatalyst. Applied Catalysis B: Environmental, 111, 326-333.
http://dx.doi.org/10.1016/j.apcatb.2011.10.015
[20] Zhao, J., Zhang, D.M. and Zhao, J. (2011) Fabrication of Cu-Ag Core-Shell Bimetallic Superfine Powders by Eco- Friendly Reagents and Structures Characterization. Journal of Solid State Chemistry, 184, 2339-2344.
http://dx.doi.org/10.1016/j.jssc.2011.06.032
[21] Zheng, X., Zhang, Q., Guo, Y.L., Zhan, W.C., Guo, Y., Wng, Y.S. and Lu, G.Z. (2012) Epoxidation of Propylene by Molecular Oxygen over Supported Ag-Cu Bimetallic Catalysts with Low Ag Loading. Journal of Molecular Catalysis A: Chemical, 357, 106-111.
http://dx.doi.org/10.1016/j.molcata.2012.01.027
[22] Xu, Y.Y., Jiao, X.L. and Chen, D.R. (2008) PEG-Assisted Preparation of Single-Crystalline Cu2O Hollow Nanocubes. The Journal of Physical Chemistry C, 112, 16769-16773.
http://dx.doi.org/10.1021/jp8058933
[23] Strehblow, H.H., Maurice, V. and Marcus, P. (2001) Initial and Later Stages of Anodic Oxide Formation on Cu, Che- mical Aspects, Structure and Electronic Properties. Electrochimica Acta, 46, 3755-3766.
http://dx.doi.org/10.1016/S0013-4686(01)00657-0
[24] Gan, T. and Hu, S. (2011) Electrochemical Sensors Based on Grapheme Materials. Microchimica Acta, 175, 1-19.
http://dx.doi.org/10.1007/s00604-011-0639-7