不同沉积粒子对非晶碳氢薄膜性质影响的分子动力学研究
A Molecular Dynamics Simulation Study of the Influence of Different Deposited Particle on the Properties of Hydrogenated Amorphous Carbon Films
DOI: 10.12677/CMP.2016.52002, PDF, HTML, XML, 下载: 2,196  浏览: 4,951  国家科技经费支持
作者: 王 炎, 张 铭, 潘妍宏, 王昭辉, 楚上杰, 林申晔:北京工业大学,材料科学与工程学院,北京
关键词: 分子动力学非晶碳氢薄膜入射能量入射角度Molecular Dynamics Hydrogenated Amorphous Carbon Films Incident Energy Incident Angles
摘要: 非晶碳氢薄膜(a-C:H film)是一类具有亚稳态非晶结构的薄膜材料,具有许多优异特性,如极好的力学性能、光学透过性、生物相容性、极低真空摩擦系数等。文章介绍了不同沉积粒子在不同入射能量及角度的情况下,对非晶碳氢薄膜C、H原子含量、沉积率,薄膜粗糙度和sp3键组态的碳含量的影响。
Abstract: Hydrogenated amorphous carbon film (a-C:H film) is one kind of materials with metastable amor- phous structure. Hydrogenated amorphous carbon films have lots of unique properties, such as good mechanical properties, optical transmissibility, biocompatibility, and low friction coefficient. In this article, it introduces the effect of the content of C, H atoms and C-sp3, deposition rate, and roughness on hydrogenated amorphous carbon films by different incident angles and energy of particle.
文章引用:王炎, 张铭, 潘妍宏, 王昭辉, 楚上杰, 林申晔. 不同沉积粒子对非晶碳氢薄膜性质影响的分子动力学研究[J]. 凝聚态物理学进展, 2016, 5(2): 9-15. http://dx.doi.org/10.12677/CMP.2016.52002

参考文献

[1] Robertson, J. (2002) Diamond-Like Amorphous Carbon. Materials Science and Engineering R: Reports, 37, 129-281. http://dx.doi.org/10.1016/S0927-796X(02)00005-0
[2] Kržan, B., Novotny-Farkas, F. and Vižintin, J. (2009) Tribological Behavior of Tungsten-Doped DLC Coating under Oil Lubrication. Tribology International, 42, 229-235. http://dx.doi.org/10.1016/j.triboint.2008.06.011
[3] Casiraghi, C., Robertson, J. and Ferrari, A.C. (2007) Diamond-Like Carbon for Data and Beer Storage. Materials Today, 10, 44-53. http://dx.doi.org/10.1016/S1369-7021(06)71791-6
[4] 梅倩, 赵斌元, 李荣斌, 赖弈坚, 王垒, 张静. 类金刚石薄膜的气相沉积新型工艺发展[J]. 材料导报:纳米与新材料专辑, 2014(1): 94-99.
[5] Matsumoto, S., Sato, Y., Tsutsumi, M. and Setaka, N. (1982) Growth of Diamond Particles from Methane-Hydrogen Gas. Journal of Materials Science, 17, 3106-3112. http://dx.doi.org/10.1007/BF01203472
[6] Fujimori, S., Kasai, T. and Inamura, T. (1982) Carbon Film Formation by Laser Evaporation and Ion Beam Sputtering. Thin Solid Films, 92, 71-80. http://dx.doi.org/10.1016/0040-6090(82)90189-4
[7] 张宇军, 董光能, 毛军红, 曾群锋, 谢友柏. 类金刚石膜形态的分子动力学模拟研究[J]. 真空科学与技术学报, 2007, 27(6): 455-459.
[8] Gou, F., Kleyn, A.W. and Gleeson, M.A. (2008) The Application of Molecular Dynamics to the Study of Plasma- Surface Interactions: CFx with Silicon. In-ternational Reviews in Physical Chemistry, 27, 229-271. http://dx.doi.org/10.1080/01442350801928014
[9] Xue, C. and Zhou, J. (2014) An Atomistic Study of Growth Mode and Microstructure Evolution of Amorphous Carbon Films by Different Incident Carbon Atoms. Applied Surface Science, 314, 973-982. http://dx.doi.org/10.1016/j.apsusc.2014.06.133
[10] Som, T., Malhotra, M., Kulkarni, V.N. and Kumar, S. (2005) Correlation of Hydrogen Content with the Microstructure of a-C:H Films. Physica B: Condensed Matter, 355, 72-77. http://dx.doi.org/10.1016/j.physb.2004.10.024
[11] Ferrari, A.C., Libassi, A., Tanner, B.K., Stolojan, V., Yuan, J., Brown, L.M., et al. (2000) Density, sp 3 Fraction, and Cross-Sectional Structure of Amorphous Carbon Films Determined by X-Ray Reflectivity and Electron Energy-Loss Spectroscopy. Physical Review B, 62, 11089-11103. http://dx.doi.org/10.1103/PhysRevB.62.11089
[12] Findeisen, E., Feidenhansl, R., Vigild, M.E., Clausen, K.N., Hansen, J.B., Bentzon, M.D., et al. (1994) Hydrogen Concentration and Mass Density of Diamondlike Carbon Films Obtained by X-Ray and Neutron Reflectivity. Journal of Applied Physics, 76, 4636-4642. http://dx.doi.org/10.1063/1.357300
[13] Neyts, E., Bogaerts, A. and van de Sanden, M.C.M. (2006) Effect of Hydrogen on the Growth of Thin Hydrogenated Amorphous Carbon Films from Thermal Energy Radicals. Applied Physics Letters, 88, Article ID: 141922. http://dx.doi.org/10.1063/1.2193803
[14] Brenner, D.W. (1990) Empirical Potential for Hydrocarbons for Use in Simulating the Chemical Vapour Deposition of Diamond Films. Physical Review B: Condensed Matter, 42, 9458-9471. http://dx.doi.org/10.1103/PhysRevB.42.9458
[15] Brenner, D.W., Shenderova, O.A., Harrison, J., Stuart, S.J., Ni, B. and Sinnott, S.B. (2002) A Second-Generation Reactive Empirical Bond Order (rebo) Potential Energy Expression for Hydrocarbons. Journal of Physics Condensed Matter, 14, 783-802. http://dx.doi.org/10.1088/0953-8984/14/4/312
[16] Quan, W.L., Li, H.X., Zhao, F., Ji, L., Du, W., Zhou, H.D., et al. (2010) Molecular Dynamical Simulations on a-C:H Film Growth from Atomic Flux of C and H: Effect of H Fraction. Physics Letters A, 374, 2150-2155. http://dx.doi.org/10.1016/j.physleta.2010.01.059
[17] Quan, W.L., Sun, X.W., Song, Q., Fu, Z.J., Guo, P., Tian, J.H., et al. (2012) Molecular Dynamics Simulation of Hydrogenated Carbon Film Growth from CH Radicals. Applied Surface Science, 263, 339-344. http://dx.doi.org/10.1016/j.apsusc.2012.09.057
[18] 秦尤敏, 吕晓丹, 赵成利, 宁建平, 贺平逆, Bogaerts, A., 苟富均. 分子动力学模拟不同入射能量的CH与碳氢薄膜的相互作用[J]. 真空科学与技术学报, 2011, 31(2): 138-143.
[19] 张宇军, 董光能, 毛军红, 谢友柏. 含氢类金刚石膜沉积过程的分子动力学模拟[J]. 科学通报, 2007, 52(23): 2813-2817.
[20] Gou, F., Meng, C., Zhouling, Z.T. and Qiu, Q. (2007) Hydrocarbon Film Growth by Energetic CH3 Molecule Impact on SiC (001) Surface. Applied Surface Science, 253, 8517-8523. http://dx.doi.org/10.1016/j.apsusc.2007.04.023
[21] Peploski, J., Thompson, D.L. and Raff, L.M. (1992) Molecular Dynamics Studies of Elementary Surface Reactions of Acetylene and Ethynyl Radical in Low-Pressure Diamond-Film Formation. The Journal of Physical Chemistry, 96, 8538-8544.
[22] 赵成利, 孙伟中, 刘华敏, 张浚源, 吕晓丹, 秦尤敏, 宁建平, 贺平逆, 潘宇东, 苟富均. 聚变堆中碳原子在碳氢薄膜表面再沉积行为的分子动力学模拟研究[J]. 核聚变与等离子体物理, 2010, 30(4): 312-316.
[23] Li, X., Ke, P., Lee, K.R. and Wang, A. (2014) Molecular Dynamics Simulation for the Influence of Incident Angles of Energetic Carbon Atoms on the Structure and Properties of Diamond-Like Carbon Films. Thin Solid Films, 552, 136-140. http://dx.doi.org/10.1016/j.tsf.2013.12.012
[24] Joe, M., Moon, M.W., Oh, J., Lee, K.H. and Lee, K.R. (2012) Molecular Dynamics Simulation Study of the Growth of a Rough Amorphous Carbon Film by the Grazing Incidence of Energetic Carbon Atoms. Carbon, 50, 404-410. http://dx.doi.org/10.1016/j.carbon.2011.08.053
[25] Ofer, O., Adler, J. and Hoffman, A. (2006) Hydrogen Bonding in Diamond: A Computational Study. International Journal of Modern Physics C, 17, 959-966. http://dx.doi.org/10.1142/S0129183106009436
[26] Huang, Z., Pan, Z.Y., Wang, Y.X. and Du, A.J. (2002) Deposition of Hydrocarbon Molecules on Diamond (001) Surfaces: Atomic Scale Modeling. Surface and Coatings Technology, 158-159, 94-98. http://dx.doi.org/10.1016/S0257-8972(02)00226-8
[27] Ma, T.-B., Hu, Y.-Z. and Wang, H. (2007) Growth Mechanism of Diamond-Like Carbon Film Based on the Simulation Model of Atomic Motion. Acta Physica Sinica, 56, 480-486.