基于三维培养下的肿瘤细胞恶性研究
Study of Cancer Cell Malignancy Based on Three-Dimensional Cell Culture Technology
DOI: 10.12677/OJNS.2016.42016, PDF, HTML, XML, 下载: 1,986  浏览: 5,008  科研立项经费支持
作者: 郭振超:东南大学生物科学与医学工程学院,江苏 南京;蚌埠学院生物科学与食品工程系,安徽 蚌埠;张天柱*:东南大学生物科学与医学工程学院,江苏 南京
关键词: 三维细胞培养肿瘤微环境肿瘤细胞恶性耐药性评价Three-Dimensional Cell Culture Tumor Microenvironment Malignancy of Cancer Cells Drug Resistance Evaluation
摘要: 为了认识肿瘤侵袭转移的规律,干预治疗改善肿瘤的恶性,肿瘤细胞的科学研究已竞相采用三维培养技术。三维细胞培养与传统的二维培养方法相比,更能模拟接近机体内细胞生存的真实环境。作为一种更为方便、有用的技术,目前在三维培养条件下模拟体内肿瘤细胞微环境研究肿瘤细胞的恶性分化、侵袭转移、化学靶向治疗和耐药性评价已经成为生物医药领域的研究热点。
Abstract: In order to understand the law of the invasion and metastasis of cancer cells and decrease the malignancy of tumor, three-dimensional culture techniques have been wildly used in tumor cells scientific research. The technology of three-dimensional cell culture is a more convenient and useful technology than traditional two-dimensional culture; it can simulate closer to the cell sur-vival in the real environment. Through three-dimensional culture by simulating tumor microen-vironment, the study of malignant tumor cell differentiation, invasion and metastasis, chemical targeted therapy and drug resistance evaluation in vitro has become a hot research topic in the field of biomedicine today.
文章引用:郭振超, 张天柱. 基于三维培养下的肿瘤细胞恶性研究[J]. 自然科学, 2016, 4(2): 132-136. http://dx.doi.org/10.12677/OJNS.2016.42016

参考文献

[1] Hu, X.-F., Zheng, L. and Zhao, J.-M. (2013) Interaction among a Three-Dimensional Scaffold, Vessels and Cells in the Culture of Tumor Cells. Chinese Journal of Tissue Engineering Research, 42, 7442-7448.
[2] Clark, R.A., Chong, B.F., Mirchandani, N., Yamanaka, K.-I., Murphy, G.F., Dowgiert, R.K. and Kupper, T.S. (2006) A Novel Method for the Isolation of Skin Resident T Cells from Normal and Diseased Human Skin. Journal of Investigative Dermatology, 126, 1059-1070.
http://dx.doi.org/10.1038/sj.jid.5700199
[3] Godinho, S.A., Picone, R., Burute, M., Dagher, R., Su, Y., Leung, C.T., Polyak, K., Brugge, J.S., Théry, M. and Pellman, D. (2014) Oncogene-Like Induction of Cellular Invasion from Centrosome Amplification. Nature, 7503, 167-171.
http://dx.doi.org/10.1038/nature13277
[4] Suga, H., Kadoshima, T., Minaguchi, M., Ohgushi, M., Soen, M., Nakano, T., Takata, N., Wataya, T., Muguruma, K., Miyoshi, H., Yonemura, S., Oiso, Y. and Sasai, Y. (2011) Self-Formation of Functional Adenohypophysis in Three- Dimensional Culture. Nature, 1, 57-64.
http://dx.doi.org/10.1038/nature10637
[5] Finocchiaro, L.M.E., Bumaschny, V.F., Karara, A.L., Fiszman, G.L., Casais, C.C. and Glikin, G.C. (2004) Herpes Simplex Virus Thymidine Kinase/Ganciclovir System in Multicellular Tumor Spheroids. Cancer Gene Therapy, 11, 333-345.
http://dx.doi.org/10.1038/sj.cgt.7700682
[6] Khoury, H., Dankort, D.L., Sadekova, S., Naujokas, M.A., Muller, W.J. and Park, M. (2001) Distinct Tyrosine Autophosphorylation Sites Mediate Induction of Epithelial Mesenchymal Like Transition by an Activated ErbB-2/Neu Receptor. Oncogene, 20, 788-799.
http://dx.doi.org/10.1038/sj.onc.1204166
[7] Gu, Y., Ji, Y., Zhao, Y., Liu, Y., Ding, F., Gu, X. and Yang, Y. (2012) The Influence of Substrate Stiffness on the Behavior and Functions of Schwann Cells in Culture. Biomaterials, 33, 6672-6681.
http://dx.doi.org/10.1016/j.biomaterials.2012.06.006
[8] Kuga, H., Morisaki, T., Nakamura, K., Onishi, H., Noshiro, H., Uchiyama, A., Tanaka, M. and Katano, M. (2003) Interferon-Csuppresses Transforming Growth Factor-b-Induced Invasion of Gastric Carcinoma Cells Through Cross- Talk of Smad Pathway in a Three-Dimensional Culture Model. Oncogene, 22, 7838-7847.
http://dx.doi.org/10.1038/sj.onc.1207046
[9] Vishnubhotla, R., Sun, S., Huq, J., Bulic, M., Ramesh, A., Guzman, G., Cho, M. and Glover, S.C. (2007) ROCK-II Mediates Colon Cancer in Vasion Via Regulation of MMP-2 and MMP-13 at the Site of Invadopodia as Revealed by Multiphoton Imaging. Laboratory Investigation, 87, 1149-1158.
http://dx.doi.org/10.1038/labinvest.3700674
[10] Allen, M. and Jones, J. L. (2011) Jekyll and Hyde the Role of the Microenvironmenton the Progression of Cancer. The Journal of Pathololgy, 223, 162-176.
http://dx.doi.org/10.1002/path.2803
[11] Lester, R.D., Jo, M., Montel, V., Takimoto, S. and Gonias, S.L. (2007) uPAR Induces Epithelial-Mesenchymal Transition in Hypoxic Breast Cancer Cells. Journal of Cell Biology, 3, 425-436.
http://dx.doi.org/10.1083/jcb.200701092
[12] Fraley, S.I., Feng, Y., Krishnamurthy, R., Kim, D.-H., Celedon, A., Longmore, G.D. and Wirtz, D. (2010) A Distinctive Role for Focal Adhesion Proteins in Three Dimensional Cell Motility. Nature Cell Biology, 21, 598-605.
http://dx.doi.org/10.1038/ncb2062
[13] Spence, J.R., Mayhew, C.N., Rankin, S.A., Kuhar, M.F., Vallance, J.E., Hoskins, K.T.E., Kalinichenko, V.V., Wells, S.I., Zorn, A.M., Shroyer, N.F. and Wells, J.M. (2011) Directed Differentiation of Human Pluripotent Stem Cells into Intestinal Tissue in Vitro. Nature, 3, 105-110.
http://dx.doi.org/10.1038/nature09691
[14] Dardousis, K., Voolstra, C., Roengvoraphoj, M., Sekandarzad, A., Mesghenna, S., Winkler, J., Ko, Y., Hescheler, J. and Sachinidis, A. (2007) Identification of Differentially Expressed Genes Involved in the Formation of Multicellular Tumor Spheroids by HT-29 Colon Carcinoma Cells. The American Society of Gene Therapy, 1, 94-102.
http://dx.doi.org/10.1038/sj.mt.6300003
[15] Matsubara, S. and Ozawa, M. (2004) Expression of a-Catenin in a-Catenin-Deficient Cells Results in a Reduced Proliferation in Three-Dimensional Multicellular Spheroids but not in Two-Dimensional Monolayer Cultures. Oncogene, 23, 2694-2702.
http://dx.doi.org/10.1038/sj.onc.1207423
[16] Vailhé, B., Vittet, D. and Feige, J.-J. (2001) In Vitro Models of Vasculogenesis and Angiogenesis. Laboratory Investigation, 4, 439-451.
http://dx.doi.org/10.1038/labinvest.3780252
[17] Liu, L., Duclos, G., Sun, B., Lee, J., Wu, A., Kam, Y., Sontag, E.D., Stone, H.A., Sturm, J.C., Gatenby, R.A. and Austin, R.H. (2013) Minimization of Thermodynamic Costs in Cancer Cell Invasion. Proceeding of the National Academy Sciences of the United States of America, 5, 1686-1691.
http://dx.doi.org/10.1073/pnas.1221147110
[18] Rosenzweig, M., Pykett, M., Marks, D.F. and Johnson, R.P. (1997) Enhanced Maintenance and Retroviral Transduction of Primitive Hematopoietic Progenitor Cells Using a Novel Three-Dimensional Culture System. Gene Therapy, 4, 928-936.
http://dx.doi.org/10.1038/sj.gt.3300480
[19] Chandrasekaran, S., Giang, U.-B.T., King, M.R. and DeLouise, L.A. (2011) Microenvironment Induced Spheroid to Sheeting Transition of Immortalized Human Keratinocytes (HaCaT) Cultured in Microbubbles Formed in Polydimethylsiloxane. Biomaterials, 32, 7159-7168.
http://dx.doi.org/10.1016/j.biomaterials.2011.06.013
[20] Schedin, P.J., Eckel-Mahan, K.L., Daniel, S.M.M., Prescott, J.D., Brodsky, K.S., Tentler, J.J. and Gutierrez-Hartmann, A. (2004) ESX Induces Transformation and Functional Epithelial to Mesenchymal Transition in MCF-12A Mammary Epithelial Cells. Oncogene, 23, 1766-1779.
http://dx.doi.org/10.1038/sj.onc.1207391
[21] Nguyen-Ngoc, K.-V., Cheung, K.J., Brenot, A., Shamir, E.R., Gray, R.S., Hines, W.C., Yaswen, P., Werb, Z. and Ewald, A.J. (2012) ECM Microenvironment Regulates Collective Migration and local Dissemination in Normal and Malignant Mammary Epithelium. Proceeding of the National Academy Sciences of the United States of America, 23, E2595-E2604.
http://dx.doi.org/10.1073/pnas.1212834109
[22] Rizvi, I., Gurkan, U.A., Tasoglu, S., Alagic, N., Celli, J.P., Mensah, L.B., Mai, Z., Demirci, U. and Hasan, T. (2013) Flow Induces Epitheli-al-Mesenchymal Transition, Cellular Heterogeneity and Biomarker Modulation in 3D Ovarian Cancer Nodules. Proceeding of the National Academy Sciences of the United States of America, 22, E1974-E1983.
http://dx.doi.org/10.1073/pnas.1216989110
[23] Kenny, H.A., Krausz, T., Yamada, S.D. and Lengyel, E. (2007) Use of a Novel 3D Culture Model to Elucidate the role of Mesothelial Cells, Fibroblasts and Extra-Cellular Matrices on Adhesion and Invasion of Ovarian Cancer Cells to the Omentum. International Journal of Cancer, 121, 1463-1472.
http://dx.doi.org/10.1002/ijc.22874
[24] Wojtkowiak, J.W., Verduzco, D., Schramm, K.J. and Gillies, R.J. (2011) Drug Resistance and Cellular Adaptation to Tumor Acidic PH Microenvironment. Molecular Pharmaceutics, 8, 2032-2038.
http://dx.doi.org/10.1021/mp200292c
[25] Liu, X., Weaver, E.M. and Hummon, A.B. (2013) Evaluation of Therapeutics in Three-Dimensional Cell Culture Systems by MALDI Imaging Mass Spectrometry. Analytical Chemisty, 85, 6295-6302.
http://dx.doi.org/10.1021/ac400519c
[26] Huang, S., Shao, K., Liu, Y., Kuang, Y., Li, J., An, S., Guo, Y., Ma, H. and Jiang, C. (2013) Tumor-Targeting and Microenvironment-Responsive Smart Nanoparticles for Combination Therapy of Antiangiogenesis and Apoptosis. Journal of American Chemical Society, 3, 2860-2871.
[27] Chen, K.-C., Wu, S.-Y., Leu, Y.-L., Prijovich, Z.M., Chen, B.-M., Wang, H.-E., Cheng, T.-L. and Roffler, S.R. (2011) A Humanized Immunoenzyme with Enhanced Activity for Glucuronide Prodrug Activation in the Tumor Microenvironment. Bioconjugate Chemistry, 22, 938-948.
http://dx.doi.org/10.1021/bc1005784