掺杂原子对α-Cr2O3结构稳定性和电子特性的第一性原理研究
First-Principle Study of Doping Atoms Effects on Structural Stability and Electronic Properties of α-Cr2O3 Oxide
DOI: 10.12677/APP.2016.65013, PDF, HTML, XML, 下载: 1,984  浏览: 4,409  国家自然科学基金支持
作者: 庄晟逸, 张竹霞, 黄 慧, 王 剑, 韩培德*:太原理工大学,教育部新材料界面科学与工程教育部重点实验室,山西 太原;太原理工大学材料科学与工程学院,山西 太原
关键词: 三氧化二铬密度泛函理论结合能电子特性掺杂Cr2O3 Density Functional Theory Cohesive Energy Electronic Property Doped
摘要: 本文采用第一性原理研究了掺杂原子对α-Cr2O3结构稳定性和电子特性的影响。研究结果表明Fe、Mo、Nb、Ni、Mn、Al、Si掺杂于α-Cr2O3复合体系的结合能均为负值,这些元素构成的α-Cr2O3复合氧化物均具有稳定的结构,尤其Nb的作用最为明显。吉布斯自由能来看,掺杂原子后α-Cr2O3复合体系结构稳定性在200~1000 K温度范围内,随着温度的升高结构稳定性逐步增强,尤以Ni和Si最为明显。由布居数和态密度分析了复合体系α-Cr1.5M0.5O3的电化学活性,计算结果来看Mo和Al能使α-Cr2O3构成的复合氧化物的带隙宽度稍微增加,而Si和Mn则使α-Cr2O3的带隙宽度变窄,即Mo和Al能提高α-Cr1.5Mo0.5O3和α-Cr1.5Mo0.5O3复合氧化物的电子化学稳定性。
Abstract: The structural stability and electronic property of α-Cr1.5M0.5O3 with doping atoms are studied by first-principle calculations. The cohesive energy of α-Cr2O3 with Fe, Mo, Nb, Ni, Mn, Al and Si elements indicates that Nb, Al, Mo and Mn atoms are effective for improving the binding ability of α-Cr2O3 , especially Nb in α-Cr2O3 oxide. Gibbs free energy proves that these doping atoms’ solid solution in α-Cr2O3 makes the structure more stable at the temperature range of 200 - 1000 K, especially Ni and Si in α-Cr2O3 oxide. Compared with the band gap width of α-Cr1.5M0.5O3 (M = Cr, Fe, Mo, Nb, Ni, Mn, Al, Si), Mo and Al are elements which are effective for increasing band gap width of α-Cr1.5M0.5O3, namely Mo and Al can make the structure more electrochemically stable.
文章引用:庄晟逸, 张竹霞, 黄慧, 王剑, 韩培德. 掺杂原子对α-Cr2O3结构稳定性和电子特性的第一性原理研究[J]. 应用物理, 2016, 6(5): 91-99. http://dx.doi.org/10.12677/APP.2016.65013

参考文献

[1] Zhu, L., Peng, X., Yan, J. and Wang, F. (2004) Oxidation of a Novel Chromium Coating with CeO2 Dispersions. Oxidation of Metals, 62, 411–426. http://dx.doi.org/10.1007/s11085-004-0921-8
[2] Marcus, P., Ed. (2002) Corrosion Mechanisms in Theory and Practice. 2nd Edition, Marcel Dekker, New York. http://dx.doi.org/10.1201/9780203909188
[3] Maldonado, F., Rivera, R. and Stashans, A. (2012) Structure, Electronic and Magnetic Properties of Ca-Doped Chromium Oxide Stu Died by the DFT Method. Physica B, 407, 1262-1267. http://dx.doi.org/10.1016/j.physb.2012.01.116
[4] Crosbie, G.M., Tennenhouse, G.J., et al. (1984) Electronically Conductive Magnesia Doped Oxide Ceramics for Use in Sodium Sulphur Batteries. US, US4456664.
[5] Cava, S. and Tebcherani, S.M. (2007) Structural and Spectroscopic Characterization of Al2−xCrxO3 Powders Obtained by Polymeric Precursor Method. Journal of Sol-Gel Science and Technology, 43, 131-136. http://dx.doi.org/10.1007/s10971-007-1541-y
[6] Nabi, H.S. and Pentcheva, R. (2011) Energetic Stability and Magnetic Coupling in (Cr1−xFex)2O3: Evidence for a Ferrimagnetic Ilmenite-Type Superlattice from First Principles. Physical Review B, 83, Article ID: 214424. http://dx.doi.org/10.1103/PhysRevB.83.214424
[7] Yan, Y.F., Xu, X.Q., et al. (2013) Hot Corrosion Behaviour and Its Mechanism of a New Alumina-Forming Austenitic Stainless Steel in Molten Sodium Sulphate. Corrosion Science, 77, 202-209. http://dx.doi.org/10.1016/j.corsci.2013.08.003
[8] Blacklocks, A.N., Atkinson, A., Packer, R.J., et al. (2006) An XAS Study of the Defect Structure of Ti-Doped α-Cr2O3. Solid State Ionics, 177, 2939-2944. http://dx.doi.org/10.1016/j.ssi.2006.08.028
[9] Lavigne, O., Alemany-Dumont, C. and Normand, B. (2011) The Effect of Nitrogen on the Passivation Mechanisms and Electroni Properties of Chromium Oxide Layers. Corrosion Science, 53, 2087-2096. http://dx.doi.org/10.1016/j.corsci.2011.02.026
[10] Shi, S.Q., Wysocki, A.L. and Belashchenko, K.D. (2009) Magnetism of Chromia from First-Principles Calculations. Physical Review B, 79, Article ID: 104404. http://dx.doi.org/10.1103/physrevb.79.104404
[11] Corliss, L.M., Hastings, J.M., Nathans, R. and Shirane, G. (1965) Magnetic Structure of Cr2O3. Journal of Applied Physics, 36, 1099. http://dx.doi.org/10.1063/1.1714118
[12] Saalfeld, V.H. (1964) Strukturuntersuchungen im System Al2O3-Cr2O3. Zeitschrift für Kristallographie, 120, 342-348. http://dx.doi.org/10.1524/zkri.1964.120.4-5.342
[13] Qi, W.H., Wang, M.P. and Xu, G.Y. (2003) The Particle Size Dependence of Cohesive Energy of Metallic Nanoparticles. Chemical Physics Letters, 372, 632-634. http://dx.doi.org/10.1016/S0009-2614(03)00470-6
[14] Wu, M.M., Jiang, Y., Wu, Y., et al. (2011) Structural Elastic and Electronic Properties of Mg(Cu1−xZnx)2 Alloys Calculated by First-Principles. Journal of Alloys and Compounds, 509, 2885-2890. http://dx.doi.org/10.1016/j.jallcom.2010.11.148
[15] Zhou, D.W., Liu, J.S. and Xu, S.H. (2010) Thermal Stability and Elastic Properties of Mg3Sb2 and Mg3Bi2 Phases from First-Principles Calculations. Physica B, 405, 2863-2868. http://dx.doi.org/10.1016/j.physb.2010.04.013