5083铝合金静态再结晶行为研究
Study of Static Recrystallization Behavior of 5083 Aluminum Alloy
DOI: 10.12677/MS.2016.63016, PDF, HTML, XML, 下载: 2,198  浏览: 5,595  科研立项经费支持
作者: 张佳琪, 付 平, 邓运来:中南大学,轻合金研究院,湖南 长沙 ;戴青松:中南大学,材料科学与工程学院,湖南 长沙
关键词: 5083铝合金热变形条件热处理条件静态再结晶动力学方程5083 Aluminum Alloy Hot Deformation Conditions Heat Treatment Conditions Kinetics Equation of Static Recrystallization
摘要: 本文采用Gleeble热模拟实验、金相实验、硬度实验验,研究了热变形条件及热处理条件对5083铝合金静态再结晶行为的影响。研究结果表明:5083铝合金热变形过程中Zener-Hollomon参数值越大或变形程度越大,则合金在后续退火过程中的再结晶速率越大,再结晶后的晶粒尺寸越细小;热变形后的退火温度越高,则合金在退火过程中的再结晶速率越大,但退火温度对合金再结晶后的晶粒尺寸影响不明显;随着退火时间的延长,合金金相组织从纤维状转变为等轴状,进一步延长退火时间后晶粒将发生长大现象。根据实验结果建立了5083铝合金静态再结晶动力学方程。
Abstract: This paper examined the effects of hot deformation conditions and heat treatment conditions on the static recrystallization behavior of 5083 aluminum alloy, using Gleeble thermal simulation experiment, metallography experiment and hardness test. The results indicate that with the rising of Zener-Hollomon parameter value or deformation amount during 5083 hot deformation process, the recrystallization rate increases and the recrystallized grain size of the alloy becomes finer. Moreover, the increase of annealing temperature after hot deformation can promote the recrys-tallization rate while annealing temperature has no obvious effect on the recrystallized grain size of the alloy. Microstructure of the alloy develops from a fibrous structure into an equiaxed one with the increase of holding time, and grain growth appears with the increase of time. The kinetics equation of static recrystallization of 5083 aluminum alloy was established based on the experi-mental results.
文章引用:张佳琪, 戴青松, 付平, 邓运来. 5083铝合金静态再结晶行为研究[J]. 材料科学, 2016, 6(3): 125-132. http://dx.doi.org/10.12677/MS.2016.63016

参考文献

[1] 梁岩, 王国军. 舰船用Al-Mg系铝合金[J]. 黑龙江冶金, 2007(3): 3-6.
[2] Wang, J.Y., Cheng, L., Zheng, S.L., Yin, C.Y. and Wang, Y.H. (2014) Growth and Corrosion Behaviors of Thin Anodic Alumina Membrane on AA5083 Al-Mg Alloy in Incalescent Medium. Transactions of Nonferrous Metals Society of China, 24, 3023-3030.
http://dx.doi.org/10.1016/S1003-6326(14)63440-3
[3] Gali, O.A., Riahi, A.R. and Alpas, A.T. (2014) The Effect of Surface Conditions on the Elevated Temperature Sliding Contact Deformation of AA5083 Alloy. Wear, 330, 309-319.
[4] Panagopoulos, C.N. and Georgiou, E.P. (2010) Cold Rolling and Lubricated Wear of 5083 Aluminum Alloy. Materials & Design, 31, 1050-1055.
http://dx.doi.org/10.1016/j.matdes.2009.09.056
[5] Neil, D.H., Wil-liam, H.V.G. and Wojciech, Z.M. (2009) Surface Grain Structure Evolution in Hot Rolling of 6061 Aluminum Alloy. Journal of Materials Processing Technology, 209, 5990-5995.
http://dx.doi.org/10.1016/j.jmatprotec.2009.07.019
[6] Chao, H.Y., Sun, H.F., Chen, W.Z. and Wang, E.D. (2011) Static Recrystallization Kinetics of a Heavily Cold Drawn AZ31 Magnesium Alloy under Annealing Treatment. Materials Characterization, 62, 312-320.
http://dx.doi.org/10.1016/j.matchar.2011.01.007
[7] 赵新兵, 毛卫民. 金属的再结晶与晶粒长大[M]. 北京: 冶金工业出版社, 1994.
[8] Lin, Y.C., Chen, M. and Zhong, J. (2008) Study of Static Recrystallization Kinetics in a Low Alloy Steel. Computational Materials Science, 44, 316-321.
http://dx.doi.org/10.1016/j.commatsci.2008.03.027
[9] Wells, M.A., Samarasekera, I.V., Brimacombe, J.K. and Hawbolt, E.B. (1998) Modeling the Microstructural Changes during Hot Tandem Rolling of AA5XXX Aluminum Al-loys: Part I. Microstructural Evolution. Metallurgical and Materials Transactions B, 29, 611-620.
http://dx.doi.org/10.1007/s11663-998-0096-9