基于双轨道模型单层铜氧化物高温超导体的量子蒙特卡罗探究
Quantum Monte Carlo Study of the Single-Layered High-Tc Cuprates with a Two-Orbital Model
DOI: 10.12677/CMP.2016.52003, PDF, HTML, XML, 下载: 1,880  浏览: 3,758  国家自然科学基金支持
作者: 关 莹, 梅 聪, 黄忠兵:湖北大学物理与电子科学学院,湖北 武汉;高 云:湖北大学材料科学与工程学院,湖北 武汉
关键词: 铜氧化物高温超导体超导双轨道模型量子蒙特卡罗High-Tc Cuprates Superconductivity Two-Orbital Model Quantum Monte Carlo
摘要: 基于描述单层铜氧化物高温超导体的双轨道模型(包含 轨道),我们采用约束路径量子蒙特卡罗方法研究了La2−x(Sr/Ba)xCuO4和HgBa2CuO4+x的超导特性。我们发现随着两个轨道间能量差ΔE的增加,d波配对关联函数被显著增强。该结果合理解释了HgBa2CuO4+x相比于La2−x(Sr/Ba)xCuO4具有更高超导临界转变温度这一特性。由于两个超导体系中的自旋关联函数相似,因而形成库伯对的反铁磁自旋涨落不是导致与材料相关的超导特性的根源。进一步分析发现 轨道上的空穴浓度随着ΔE的增大而增加,使得有更多空穴参与配对的HgBa2CuO4+x具有更高的超导临界转变温度。我们的研究有助于理解单层铜氧化物高温超导体的超导特性。
Abstract: On the basis of a two-orbital model (including and orbitals), we perform a systematic study of the superconducting property in single-layered La2−x(Sr/Ba)xCuO4 and HgBa2CuO4+x by using the constrained-path Monte Carlo method. We find that the d-wave pairing correlation is strongly enhanced with increasing the energy difference ΔE between and orbitals, which provides a reasonable explanation of higher superconducting critical temperature Tc in HgBa2CuO4+x than in La2−x(Sr/Ba)xCuO4. The similar spin correlations in the La- and Hg-based systems suggest that antiferromagnetism is not responsible for material-dependent superconductivity. Further analysis indicates that the hole density on the orbital increases with increasing ΔE, leading to a higher Tc in the Hg-based system with larger ΔE. Our results are useful for understanding the superconducting property in single-layered high-Tc cuprates.
文章引用:关莹, 梅聪, 高云, 黄忠兵. 基于双轨道模型单层铜氧化物高温超导体的量子蒙特卡罗探究[J]. 凝聚态物理学进展, 2016, 5(2): 16-22. http://dx.doi.org/10.12677/CMP.2016.52003

参考文献

[1] Tsuei, C.C. and Kirtley, J.R. (2000) Pairing Symmetry in Cuprate Superconductors. Review of Modern Physics, 72, Article ID: 969. http://dx.doi.org/10.1103/revmodphys.72.969
[2] Damascelli, A., Hussain, Z. and Shen, Z.X. (2003) Angle-Resolved Photoemission Studies of the Cuprate Superconductors. Review of Modern Physics, 75, Article ID: 473. http://dx.doi.org/10.1103/RevModPhys.75.473
[3] Basov, D.N. and Timusk, T. (2005) Electrodynamics of High-Tc Superconductors. Review of Modern Physics, 77, Article ID: 721.
[4] Jorgensen, J.D., et al. (1987) Lattice Instability and High-Tc Superconductivity in La2−xBaxCuO4. Physical Review Letters, 58, Article ID: 1024. http://dx.doi.org/10.1103/PhysRevLett.58.1024
[5] Wagner, J.L., et al. (1993) Structure and Superconductivity of HgBa2CuO4+δ. Physica C, 210, Article ID: 447. http://dx.doi.org/10.1016/0921-4534(93)90989-4
[6] Shih, C.T., Lee, T.K., Eder, R., Mou, C.-Y. and Chen, Y.C. (2004) Enhancement of Pairing Correlation by t’ in the Two-Dimensional Extended t-J Model. Physical Review Letters, 92, Article ID: 227002. http://dx.doi.org/10.1103/PhysRevLett.92.227002
[7] Prelovsek, P. and Ramsk, A. (2005) Spin-Fluctuation Mechanism of Superconductivity in Cuprates. Physical Review B, 72, Article ID: 012510. http://dx.doi.org/10.1103/physrevb.72.012510
[8] Huang, Z.B., Lin, H.Q. and Gubernatis, J.E. (2001) Quantum Monte Carlo Study of Spin, Charge, and Pairing Correlations in the t-t’-U Hubbard Model. Physical Review B, 64, Article ID: 205101. http://dx.doi.org/10.1103/PhysRevB.64.205101
[9] Veilleux, A.F., Dare, A.M., Chen, L., Vilk, Y.M. and Tremblay, A.-M.S. (1995) Magnetic and Pair Correlations of the Hubbard Model with Next-Nearest-Neighbor Hopping. Physical Review B, 52, Article ID: 16255. http://dx.doi.org/10.1103/physrevb.52.16255
[10] Chen, K.-S., Meng, Z.Y., Yang, S.-X., Pruschke, T., Moreno, J. and Jarrell, M. (2013) Evolution of the Superconductivity in the Two-Dimensional Hubbard Model. Physical Review B, 88, Article ID: 245110. http://dx.doi.org/10.1103/PhysRevB.88.245110
[11] Sakakibara, H., Usui, H., Kuroki, K., Arita, R. and Aoki, H. (2010) Two-Orbital Model Explains the Higher Transition Temperature of the Single-Layer Hg-Cuprate Superconductor Compared to That of the La-Cuprate Superconductor. Physical Review Letters, 105, Article ID: 057003. http://dx.doi.org/10.1103/physrevlett.105.057003
[12] Sakakibara, H., Usui, H., Kuroki, K., Arita, R. and Aoki, H. (2012) Origin of the Material Dependence of Tc in the Single-Layered Cuprates. Physical Review B, 85, Article ID: 064501. http://dx.doi.org/10.1103/PhysRevB.85.064501
[13] Zhang, S.W., Carlson, J. and Gubernatis, J.E. (1997) Constrained Path Quantum Monte Carlo Method for Fermion Ground States. Physical Review B, 55, Article ID: 7464. http://dx.doi.org/10.1103/PhysRevB.55.7464
[14] Zhang, S.W., Carlson, J. and Gubernatis, J.E. (1997) Pairing Correlations in the Two-Dimensional Hubbard Model. Physical Review Letters, 78, Article ID: 4486. http://dx.doi.org/10.1103/physrevlett.78.4486
[15] Huang, Z.B., Lin, H.Q. and Gubernatis, J.E. (2001) Pairing, Charge, and Spin Correlations in the Three-Band Hubbard Model. Physical Review B, 63, Article ID: 115112. http://dx.doi.org/10.1103/physrevb.63.115112
[16] Huang, Z.B., Lin, H.Q. and Arrigoni, E. (2011) Strong Enhancement of d-Wave Superconducting State in the Three- Band Hubbard Model Coupled to an Apical Oxygen Phonon. Physical Review B, 83, Article ID: 064521. http://dx.doi.org/10.1103/physrevb.83.064521