挥发诱导自组装制备多孔Li4SiO4材料
An Evaporation Induced Self-Assembly Method to Porous Li4SiO4 Materials
DOI: 10.12677/JAPC.2016.52005, PDF, HTML, XML, 下载: 2,249  浏览: 6,607 
作者: 黄雪芹, 韩继梅, 肖 强, 钟依均, 朱伟东:浙江师范大学物理化学研究所,先进催化材料省部共建教育部重点实验室,浙江 金华
关键词: Li4SiO4模板剂自组装CO2吸收Li4SiO4 Template Self-Assembly CO2 Absorption
摘要: 本文以氢氧化锂(LiOH•H2O)为锂源、正硅酸乙酯(TEOS)为硅源、去离子水为溶剂、十六烷基三甲基溴化氨(CTAB) + 聚丙烯酸(PAA)为复合模板剂,采用挥发诱导自组装法(EISA)经高温焙烧制备多孔Li4SiO4 材料。利用X射线粉末衍射(XRD)和扫描电子显微镜(SEM)对材料的结构特征与表面形貌进行表征,用N2吸脱附考察材料的孔结构,在热重分析仪(TG)上研究Li4SiO4材料高温下的CO2吸收性能和循环稳定性。实验结果表明,以CTAB + PAA为复合模板剂,60℃溶剂挥发诱导自组装制备的Li4SiO4材料在550℃、0.25 bar下5 min内吸收量可达22.5 wt%,且在10 min内达到吸收平衡,平衡吸收量为28.8 wt.%,经5次吸收–解吸后仍保持初始吸收性能,显示了良好的循环稳定性。
Abstract: A solvent evaporation induced self-assembly (EISA) method followed by calcination was employed to prepare porous Li4SiO4 materials by using LiOH•H2O, TEOS, deionized water, and CTAB + PAA as lithium source, silicon source, solvent, and composite template, respectively. X-ray powder dif-fraction (XRD) and scanning electron microscope (SEM) were applied to characterize the structure and morphology of the as-prepared Li4SiO4 materials. The pore structures of the Li4SiO4 materials were investigated by the N2 adsorption-desorption analysis. CO2 uptakes and recycle stability of the prepared Li4SiO4 materials were investigated on a thermogravity (TG) analyzer. The sample synthesized by the EISA method at 60˚C displays CO2 uptakes up to 22.5 wt% within 5 min. Addi-tionally, an absorption equilibrium of 28.8 wt% can be available within 10 min at 550˚C and a CO2 partial pressure of 0.25 bar. After five absorption-desorption cycles, the Li4SiO4 material keeps its original CO2 absorption properties, indicating a good cycle stability.
文章引用:黄雪芹, 韩继梅, 肖强, 钟依均, 朱伟东. 挥发诱导自组装制备多孔Li4SiO4材料[J]. 物理化学进展, 2016, 5(2): 39-47. http://dx.doi.org/10.12677/JAPC.2016.52005

参考文献

[1] 陈长虹, 鲍仙华. 全球能源消费与CO2排放量[J]. 上海环境科学, 1999, 18(2): 62-64.
[2] Song, C. (2006) Global Challenges and Strategies for Control, Conversion and Utilization of CO2. for Sustainable Development Involving Energy, Catalysis, Adsorption and Chemical Processing. Catalysis Today, 115, 2-32.
http://dx.doi.org/10.1016/j.cattod.2006.02.029
[3] Xiao, Q., Liu, Y.F., Zhong, Y.J., et al. (2011) A Citrate Sol-Gel Method to Synthesize Li2ZrO3 Nanocrystals with Improved CO2 Capture Properties. Journal of Materials Chemistry, 21, 3838-3842.
http://dx.doi.org/10.1039/c0jm03243c
[4] Xiao, Q., Tang, X.D., Liu, Y.F., et al. (2011) Citrate Route to Prepare K-Doped Li2ZrO3 Sorbents with Excellent CO2 Capture Properties. Chemical Engineering Journal, 174, 231-235.
http://dx.doi.org/10.1016/j.cej.2011.09.005
[5] Xiao, Q., Tang, X.D., Zhong, Y.J., et al. (2012) A Facile Starch-Assisted Sol-Gel Method to Synthesize K-Doped Li2ZrO3 Sorbents with Excellent CO2 Capture Properties. Journal of the American Ceramic Society, 95, 1544-1548.
http://dx.doi.org/10.1111/j.1551-2916.2012.05090.x
[6] Xiao, Q., Tang, X.D., Liu, Y.F., et al. (2013) Compari-son Study on Strategies to Prepare Nanocrystalline Li2ZrO3- Based Absorbents for CO2 Capture at High Temperatures. Frontiers of Chemical Science & Engineering, 7, 297-302.
http://dx.doi.org/10.1007/s11705-013-1346-1
[7] 张元卓, 于兹瀛, 张富民, 等. 纳米Li2ZrO3吸收剂原位移除CO2强化水煤气变换反应制氢[J]. 催化学报, 2012(33): 1572-1577.
[8] Venegas, M.J., Fregoso-Israel, E., Escamilla, R., et al. (2007) Kinetic and Reaction Mechanism of CO2 Sorption on Li4SiO4:  Study of the Particle Size Effect. Industrial and Engineering Chemistry Research, 46, 2407-2412.
http://dx.doi.org/10.1021/ie061259e
[9] Shan, S.Y., Jia, Q.M. and Jiang, L.H. (2011) Effect of Different Silicon Sources on CO2 Absorption Properties of Li4SiO4 at High Temperature. Advanced Materials Research, 213, 515-518.
http://dx.doi.org/10.4028/www.scientific.net/AMR.213.515
[10] Choudhary, A. (2013) Synthesis and Characte-rization of Li4SiO4 Ceramics from Rice Husk Ash by a Solution-Com- bustion Method. Fusion Science & Technology, 65, 273-281.
[11] 悦灵丽, 肖强, 钟依均, 等. 金属元素掺杂对硅酸锂材料二氧化碳吸收性能的影响[J]. 现代化工, 2014(34): 70-73.
[12] Wang, K., Yin, Z. and Zhao, P. (2015) Synthesis of Macroporous Li4SiO4 via a Citric Ac-id-Based Sol-Gel Route Coupled with Carbon Coating and Its CO2 Chemisorption Properties. Ceramics International, 42, 2990-2999.
http://dx.doi.org/10.1016/j.ceramint.2015.10.083
[13] 孙婷婷, 吴正舜, 刘晓燕. Li4SiO4对CO2捕集性能的实验研究[J]. 燃料化学学报, 2012, 40(5): 636-640.
[14] Zhang, Q., Han, D., Liu, Y., et al. (2013) Analysis of CO2 Sorption/Desorption Kinetic Behaviors and Reaction Mechanisms on Li4SiO4. AIChE Journal, 59, 901-911.
http://dx.doi.org/10.1002/aic.13861
[15] Essaki, K. and Kato, M. (2005) Influence of Temperature and CO2 Con-centration on the CO2 Absorption Properties of Lithium Silicate Pellets. Journal of Materials Science, 40, 5017-5019.
http://dx.doi.org/10.1007/s10853-005-1812-3
[16] Jun-Ichi, I. and Lin, Y.S. (2003) Mechanism of High-Temperature CO2 Sorption on Lithium Zirconate. Environmental Science & Technology, 37, 1999-2004.
http://dx.doi.org/10.1021/es0259032
[17] Xiong, R., Ida, J. and Lin, Y.S. (2003) Kinetics of Carbon Dioxide Sorption on Potassium-Doped Lithium Zirconate. Chemical Engineering Science, 58, 4377-4385.
http://dx.doi.org/10.1016/S0009-2509(03)00319-1
[18] Wang, J.G., Zhou, H.J., Sun, P.C., et al. (2010) Hollow Carved Single-Crystal Mesoporous Silica Templated by Mesomorphous Polyelectrolyte-Surfactant Complexes. Che-mistry of Materials, 22, 3829-3831.
http://dx.doi.org/10.1021/cm101217k
[19] 俞义轩, 刘建, 南海明, 等. 孔径可调的介孔SiO2自支持薄膜的溶剂挥发诱导自组装合成与表征[J]. 高等学校化学学报, 2011, 31(11): 2136-2140.