|
[1]
|
Novoselov, K.S., Geim, A.K., Morozov, S.V., et al. (2004) Electric Field Effect in Atomically Thin Carbon Films. Science, 306, 666-669. http://dx.doi.org/10.1126/science.1102896
|
|
[2]
|
Geim, A.K. (2009) Graphene: Status and Prospects. Science, 324, 1530-1534.
http://dx.doi.org/10.1126/science.1158877
|
|
[3]
|
Berger, C., Song, Z., Li, T., et al. (2004) Ultrathin Epitaxial Graphite: 2d Electron Gas Properties and a Route toward Graphene-Based Nanoelectronics. The Journal of Physical Chemistry B, 108, 19912-19916.
http://dx.doi.org/10.1021/jp040650f
|
|
[4]
|
Stankovich, S., Dikin, D.A., Dommett, G.H.B., et al. (2006) Gra-phene-Based Composite Materials. Nature, 442, 282- 286. http://dx.doi.org/10.1038/nature04969
|
|
[5]
|
Tung, V.C., Allen, M.J., Yang, Y., et al. (2009) High-Throughput Solution Processing of Large-Scale Graphene. Nature Na-notechnology, 4, 25-29. http://dx.doi.org/10.1038/nnano.2008.329
|
|
[6]
|
Di, C.-A., Wei, D., Yu, G., et al. (2008) Patterned Graphene as Source/Drain Electrodes for Bottom-Contact Organic Field-Effect Transistors. Advanced Mate-rials, 20, 3289-3293.
|
|
[7]
|
Wu, J., Pisula, W. and Müllen, K. (2007) Graphenes as Potential Material for Electronics. Chemical Reviews, 107, 718-747. http://dx.doi.org/10.1021/cr068010r
|
|
[8]
|
Shih, C.-J., Lin, S., Strano, M.S., et al. (2010) Understanding the Stabilization of Liquid-Phase-Exfoliated Graphene in Polar Solvents: Molecular Dynamics Simulations and Kinetic Theory of Colloid Aggregation. Journal of the American Chemical Society, 132, 14638-14648. http://dx.doi.org/10.1021/ja1064284
|
|
[9]
|
Li, X., Li, L., Wang, Y., et al. (2013) Wetting and Interfacial Properties of Water on the Defective Graphene. The Journal of Physical Chemistry C, 117, 14106-14112. http://dx.doi.org/10.1021/jp4045258
|
|
[10]
|
Meyer, J.C., Geim, A.K., Katsnelson, M.I., et al. (2007) The Structure of Suspended Graphene Sheets. Nature, 446, 60-63. http://dx.doi.org/10.1038/nature05545
|
|
[11]
|
Fasolino, A., Los, J.H. and Katsnelson, M.I. (2007) Intrinsic Ripples in Graphene. Nature Materials, 6, 858-861.
http://dx.doi.org/10.1038/nmat2011
|
|
[12]
|
Stolyarova, E., Rim, K.T., Ryu, S., Maultzsch, J., Kim, P., Brus, L.E., et al. (2007) High-Resolution Scanning Tunneling Microscopy Imaging of Mesoscopic Graphene Sheets on an Insulating Surface. Proceedings of the National Academy of Sciences of the United States of America, 104, 9209-9212. http://dx.doi.org/10.1073/pnas.0703337104
|
|
[13]
|
Allen, M.J., Tung, V.C. and Kaner, R.B. (2010) Honeycomb Carbon: A Review of Graphene. Chemical Reviews, 110, 132-145. http://dx.doi.org/10.1021/cr900070d
|
|
[14]
|
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V. and Firsov, A.A. (2005) Two-Dimensional Gas of Massless Dirac Fermions in Graphene. Nature, 438, 197-200.
http://dx.doi.org/10.1038/nature04233
|
|
[15]
|
Bolotin, K.I., Sikes, K.J., Hone, J., Stormer, H.L. and Kim, P. (2008) Temperature-Dependent Transport in Suspended Graphene. Physical Review Letters, 101, Article ID: 096802. http://dx.doi.org/10.1103/PhysRevLett.101.096802
|
|
[16]
|
Leenaerts, O., Partoens, B. and Peeters, F.M. (2009) Water on Graphene: Hydrophobicity and Dipole Moment Using Density Functional Theory. Physical Review B, 79, Article ID: 235440. http://dx.doi.org/10.1103/PhysRevB.79.235440
|
|
[17]
|
Taherian, F., Marcon, V., van der Vegt, N.F.A. and Leroy, F. (2013) What Is the Contact Angle of Water on Graphene? Langmuir, 29, 1457-1465.
|
|
[18]
|
Shin, Y.J., Wang, Y.Y., Huang, H., et al. (2010) Surface-Energy Engineering of Graphene. Langmuir, 26, 3798-3802.
http://dx.doi.org/10.1021/la100231u
|
|
[19]
|
Zong, Z., Chen, C.-L., Dokmeci, M.R. and Wan, K.-T. (2010) Direct Measurement of Graphene Adhesion on Silicon Surface by Intercalation of Nanoparticles. Journal of Applied Physics, 107, Article ID: 026104.
http://dx.doi.org/10.1063/1.3294960
|
|
[20]
|
Rafiee, J., Mi, X., Gullapalli, H., et al. (2012) Wetting Transparency of Graphene. Nature Materials, 11, 217-222.
http://dx.doi.org/10.1038/nmat3228
|
|
[21]
|
Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V. and Geim, A.K. (2005) Two-Dimensional Atomic Crystals. Proceedings of the National Academy of Sciences of the United States of America, 102, 10451-10453. http://dx.doi.org/10.1073/pnas.0502848102
|
|
[22]
|
Blake, P., Hill, E.W., Neto, A.H.C., Novoselov, K.S., Jiang, D., Yang, R., Booth, T.J. and Geim, A.K. (2007) Making Graphene Visible. Applied Physics Letters, 91, Article ID: 063124. http://dx.doi.org/10.1063/1.2768624
|
|
[23]
|
Ferrari, A.C., Meyer, J.C., Scardaci, V., et al. (2006) Raman Spectrum of Graphene and Graphene Layers. Physical Review Letters, 97, Article ID: 187401. http://dx.doi.org/10.1103/PhysRevLett.97.187401
|
|
[24]
|
Calizo, I., Balandin, A.A., Bao, W., Miao, F. and Lau, C.N. (2007) Temperature Dependence of the Raman Spectra of Graphene and Graphene Multilayers. Nano Letters, 7, 2645-2649. http://dx.doi.org/10.1021/nl071033g
|
|
[25]
|
Shih, C.-J., Strano, M.S. and Blankschtein, D. (2013) Wet-ting Translucency of Graphene. Nature Materials, 12, 866-869. http://dx.doi.org/10.1038/nmat3760
|
|
[26]
|
Zhang, X., Wan, S., Pu, J., Wang, L. and Liu, X. (2011) Highly Hydrophobic and Adhesive Performance of Graphene Films. Journal of Materials Chemistry, 21, 12251-12258. http://dx.doi.org/10.1039/c1jm12087e
|
|
[27]
|
Yang, J., Zhang, Z., Men, X., Xu, X. and Zhu, X. (2010) Reversible Superhydrophobicity to Superhydrophilicity Switching of a Carbon Nanotube Film via Alternation of UV Irradiation and Dark Storage. Langmuir, 26, 10198-10202.
http://dx.doi.org/10.1021/la100355n
|
|
[28]
|
Rafiee, J., Rafiee, M.A., Yu, Z.-Z. and Koratkar, N. (2010) Superhy-drophobic to Superhydrophilic Wetting Control in Graphene Films. Advanced Materials, 22, 2151-2154. http://dx.doi.org/10.1002/adma.200903696
|
|
[29]
|
Wu, C.K., Wang, G.J. and Dai, J.F. (2013) Controlled Functio-nalization of Graphene Oxide through Surface Modification with Acetone. Journal of Materials Science, 48, 3436-3442. http://dx.doi.org/10.1007/s10853-012-7131-6
|
|
[30]
|
Kim, B.H., Kim, J.Y., Jeong, S.-J., et al. (2010) Surface Energy Modification by Spin-Cast, Large-Area Graphene Film for Block Copolymer Lithography. ACS Nano, 4, 5464-5470. http://dx.doi.org/10.1021/nn101491g
|
|
[31]
|
Fowkes, F.M. (1964) Attractive Forces at Interfaces. Industrial & Engineering Chemistry Research, 56, 40-52.
http://dx.doi.org/10.1021/ie50660a008
|
|
[32]
|
Kobayashi, M., Terayama, Y., Yamaguchi, H., et al. (2012) Wettability and Antifouling Behavior on the Surfaces of Superhydrophilic Polymer Brushes. Langmuir, 28, 7212-7222. http://dx.doi.org/10.1021/la301033h
|
|
[33]
|
Das, S.C., Larson, I., Morton, D.A.V. and Stewart, P.J. (2011) Deter-mination of the Polar and Total Surface Energy Distributions of Particulates by Inverse Gas Chromatography. Langmuir, 27, 521-523.
http://dx.doi.org/10.1021/la104135z
|
|
[34]
|
Wang, S.R., Zhang, Y., Abidi, N. and Cabrales, L. (2009) Wettability and Surface Free Energy of Graphene Films. Langmuir, 25, 11078-11081. http://dx.doi.org/10.1021/la901402f
|
|
[35]
|
Menzel, R., Lee, A., Bismarck, A. and Shaffer, M.S.P. (2009) Inverse Gas Chromatography of As-Received and Modified Carbon Nanotubes. Langmuir, 25, 8340-8348. http://dx.doi.org/10.1021/la900607s
|
|
[36]
|
Gutmann, V. (1978) The Donor-Acceptor Approach to Molecular Inte-ractions. Plenum Press, New York and London.
|
|
[37]
|
Meyer, J.C., Kisielowski, C., Erni, R., Rossell, M.D., Crommie, M.F. and Zettl, A. (2008) Direct Imaging of Lattice Atoms and Topological Defects in Graphene Membranes. Nano Letters, 8, 3582-3586.
http://dx.doi.org/10.1021/nl801386m
|
|
[38]
|
Soler, J.M., Baro, A.M., Garc, N. and Rohrer, H. (1986) Interatomic Forces in Scanning Tunneling Microscopy: Giant Corrugations of the Graphite Surface. Physical Review Letters, 57, 444-447.
http://dx.doi.org/10.1103/PhysRevLett.57.444
|
|
[39]
|
Berger, C., Song, Z., Li, X., et al. (2006) Electronic Con-finement and Coherence in Patterned Epitaxial Graphene. Science, 312, 1191-1196. http://dx.doi.org/10.1126/science.1125925
|
|
[40]
|
Dresselhaus, M.S., Dresselhaus, G., Jorio, A., Souza Filho, A.G., Pimenta, M.A. and Saito, R. (2002) Single Nanotube Raman Spectroscopy. Accounts of Chemical Research, 35, 1070-1078. http://dx.doi.org/10.1021/ar0101537
|
|
[41]
|
Stankovich, S., Piner, R.D., Chen, X., Wu, N., Nguyen, S.T. and Ruoff, R.S. (2006) Stable Aqueous Dispersions of Graphitic Nanoplatelets via the Reduction of Exfoliated Graphite Oxide in the Presence of Poly(sodium 4-styrenesulfonate). Journal of Materials Chemistry, 16, 155-158. http://dx.doi.org/10.1039/B512799H
|
|
[42]
|
Stankovich, S., Dikin, D.A., Piner, R.D., et al. (2007) Synthesis of Graphene-Based Nanosheets via Chemical Reduction of Exfoliated Graphite Oxide. Carbon, 45, 1558-1565. http://dx.doi.org/10.1016/j.carbon.2007.02.034
|
|
[43]
|
Ruoff, R. (2008) Graphene: Calling All Chemists. Nature Nanotechnology, 3, 10-11.
http://dx.doi.org/10.1038/nnano.2007.432
|
|
[44]
|
Ma, X., Wigington, B. and Bouchard, D. (2010) Fullerene C60: Surface Energy and Interfacial Interactions in Aqueous Systems. Langmuir, 26, 11886-11893. http://dx.doi.org/10.1021/la101109h
|
|
[45]
|
Raj, R., Maroo, S.C. and Wang, E.N. (2013) Wettability of Graphene. Nano Letters, 13, 1509-1515.
http://dx.doi.org/10.1021/nl304647t
|
|
[46]
|
Giddings, J.C. and Keller, R.A. (1969) Advances in Chromatography. CRC Press, Boca Raton.
|
|
[47]
|
Conder, J.R. and Young, C.L. (1979) Physicochemical Measurement by Gas Chromato-graphy. John Wiley and Sons, Chichester.
|
|
[48]
|
Donnet, J.B., Park, S.J. and Brendle, M. (1992) The Effect of Micro-wave Plasma Treatment on the Surface Energy of Graphite as Measured by Inverse Gas Chromatography. Carbon, 30, 263-268.
http://dx.doi.org/10.1016/0008-6223(92)90089-F
|
|
[49]
|
Papirer, E., Brendle, E., Ozil, F. and Balard, H. (1999) Comparison of the Surface Properties of Graphite, Carbon Black and Fullerene Samples, Measured by Inverse Gas Chromatography. Carbon, 37, 1265-1274.
http://dx.doi.org/10.1016/S0008-6223(98)00323-6
|
|
[50]
|
Thielmann, F. (2004) Introduction into the Characterisation of Porous Materials by Inverse Gas Chromatography. Journal of Chromatography A, 1037, 115-123. http://dx.doi.org/10.1016/j.chroma.2004.03.060
|
|
[51]
|
Lavielle, L. and Schultz, J. (1991) Surface Properties of Carbon Fibers Determined by Inverse Gas Chromatography: Role of Pretreatment. Langmuir, 7, 978-981. http://dx.doi.org/10.1021/la00053a027
|
|
[52]
|
Zhang, X.L., Yang, D., Xu, P., Wang, C.C. and Du, Q.G. (2007) Characterizing the Surface Properties of Carbon Nanotubes by Inverse Gas Chromatography. Journal of Materials Science, 42, 7069-7075.
http://dx.doi.org/10.1007/s10853-007-1536-7
|
|
[53]
|
Díaz, E., Ordóñez, S. and Vega, A. (2007) Adsorption of Vo-latile Organic Compounds onto Carbon Nanotubes, Carbon Nanofibers, and High-Surface-Area Graphites. Journal of Colloid and Interface Science, 305, 7-16.
http://dx.doi.org/10.1016/j.jcis.2006.09.036
|
|
[54]
|
Menzel, R., Bismarck, A. and Shaffer, M.S.P. (2012) Deconvo-lution of the Structural and Chemical Surface Properties of Carbon Nanotubes by Inverse Gas Chromatography. Carbon, 50, 3416-3421.
http://dx.doi.org/10.1016/j.carbon.2012.02.094
|
|
[55]
|
Lazar, P., Karlický, F., Jurečka, P., Kocman, M., Otyepková, E., Šafářová, K. and Otyepka, M. (2013) Adsorption of Small Organic Molecules on Graphene. Journal of the American Chemical Society, 135, 6372-6377.
http://dx.doi.org/10.1021/ja403162r
|
|
[56]
|
Dai, J.F., Wang, G.J. and Wu, C.K. (2014) Investigation of the Surface Properties of Graphene Oxide and Graphene by Inverse Gas Chromatography. Chromatographia, 77, 299-307. http://dx.doi.org/10.1007/s10337-013-2597-1
|
|
[57]
|
Dai, J.F., Wang, G.J., Ma, L. and Wu, C.K. (2014) Study on the Surface Energies and Dispersibility of Graphene Oxide and Its Derivatives. Journal of Materials Science, 50, 3895-3907. http://dx.doi.org/10.1007/s10853-015-8934-z
|