石墨烯的表面性质及其分析测试技术
Progress in Surface Properties and the Surface Testing of Graphene
DOI: 10.12677/JAPC.2016.52006, PDF, HTML, XML, 下载: 2,687  浏览: 8,100 
作者: 戴进峰, 吴承恳:同济大学材料科学与工程学院,上海;王国建:同济大学材料科学与工程学院,上海;先进土木工程材料教育部重点实验室,上海
关键词: 表面性质表面结构表面能分析测试技术石墨烯Surface Properties Structural Surface Surface Energy Surface Testing Graphene
摘要: 石墨烯具有特殊的二维结构和完美的物理化学性能,科研人员在这些领域做出了一系列研究成果,但对石墨烯的表面性质研究相对较少。然而,石墨烯的表面性质对石墨烯在纳米复合材料、纳米涂层以及纳米电子器件等领域的应用起着至关重要的作用。对此,笔者通过综述石墨烯表面性质以及表面改性的研究进展,着重探讨了石墨烯表面结构与表面性质间的关系;分析和比较了常用的石墨烯表面分析测试技术。进而指出制备具有特定表面性质的功能化石墨烯和开发能适应石墨烯表面性质更宽测试范围的新技术,将是今后研究的重点。最后,对石墨烯表面结构与表面性质研究中的挑战以及应用前景进行了展望。
Abstract: Graphene has been paid much attention for its special two-dimensional structure and excellent physicochemical properties. Researchers have done a great number of studies on these fields, and have made lots of outstanding results, while less on the surface properties, relatively. However, the surface properties of graphene usually play an important role in the practical application of graphene-based materials, especially, in the nano-composites, nano-coating and electrical nano- devices. In this review, the recent developments of surface properties and surface modification of graphene are summarized, where the relationship between the structure and surface properties of graphene is highlighted. The method of surface testing is also compared and commented on briefly. We believe that the future prospects of research emphasis on preparation of functionalized graphene with special surface properties, and a new comprehensive technique for testing the surface properties of graphene. Finally, the current challenges of research on structural surface and surface properties of graphene are commented based on our own opnion.
文章引用:戴进峰, 王国建, 吴承恳. 石墨烯的表面性质及其分析测试技术[J]. 物理化学进展, 2016, 5(2): 48-57. http://dx.doi.org/10.12677/JAPC.2016.52006

参考文献

[1] Novoselov, K.S., Geim, A.K., Morozov, S.V., et al. (2004) Electric Field Effect in Atomically Thin Carbon Films. Science, 306, 666-669.
http://dx.doi.org/10.1126/science.1102896
[2] Geim, A.K. (2009) Graphene: Status and Prospects. Science, 324, 1530-1534.
http://dx.doi.org/10.1126/science.1158877
[3] Berger, C., Song, Z., Li, T., et al. (2004) Ultrathin Epitaxial Graphite: 2d Electron Gas Properties and a Route toward Graphene-Based Nanoelectronics. The Journal of Physical Chemistry B, 108, 19912-19916.
http://dx.doi.org/10.1021/jp040650f
[4] Stankovich, S., Dikin, D.A., Dommett, G.H.B., et al. (2006) Gra-phene-Based Composite Materials. Nature, 442, 282- 286.
http://dx.doi.org/10.1038/nature04969
[5] Tung, V.C., Allen, M.J., Yang, Y., et al. (2009) High-Throughput Solution Processing of Large-Scale Graphene. Nature Na-notechnology, 4, 25-29.
http://dx.doi.org/10.1038/nnano.2008.329
[6] Di, C.-A., Wei, D., Yu, G., et al. (2008) Patterned Graphene as Source/Drain Electrodes for Bottom-Contact Organic Field-Effect Transistors. Advanced Mate-rials, 20, 3289-3293.
[7] Wu, J., Pisula, W. and Müllen, K. (2007) Graphenes as Potential Material for Electronics. Chemical Reviews, 107, 718-747.
http://dx.doi.org/10.1021/cr068010r
[8] Shih, C.-J., Lin, S., Strano, M.S., et al. (2010) Understanding the Stabilization of Liquid-Phase-Exfoliated Graphene in Polar Solvents: Molecular Dynamics Simulations and Kinetic Theory of Colloid Aggregation. Journal of the American Chemical Society, 132, 14638-14648.
http://dx.doi.org/10.1021/ja1064284
[9] Li, X., Li, L., Wang, Y., et al. (2013) Wetting and Interfacial Properties of Water on the Defective Graphene. The Journal of Physical Chemistry C, 117, 14106-14112.
http://dx.doi.org/10.1021/jp4045258
[10] Meyer, J.C., Geim, A.K., Katsnelson, M.I., et al. (2007) The Structure of Suspended Graphene Sheets. Nature, 446, 60-63.
http://dx.doi.org/10.1038/nature05545
[11] Fasolino, A., Los, J.H. and Katsnelson, M.I. (2007) Intrinsic Ripples in Graphene. Nature Materials, 6, 858-861.
http://dx.doi.org/10.1038/nmat2011
[12] Stolyarova, E., Rim, K.T., Ryu, S., Maultzsch, J., Kim, P., Brus, L.E., et al. (2007) High-Resolution Scanning Tunneling Microscopy Imaging of Mesoscopic Graphene Sheets on an Insulating Surface. Proceedings of the National Academy of Sciences of the United States of America, 104, 9209-9212.
http://dx.doi.org/10.1073/pnas.0703337104
[13] Allen, M.J., Tung, V.C. and Kaner, R.B. (2010) Honeycomb Carbon: A Review of Graphene. Chemical Reviews, 110, 132-145.
http://dx.doi.org/10.1021/cr900070d
[14] Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V. and Firsov, A.A. (2005) Two-Dimensional Gas of Massless Dirac Fermions in Graphene. Nature, 438, 197-200.
http://dx.doi.org/10.1038/nature04233
[15] Bolotin, K.I., Sikes, K.J., Hone, J., Stormer, H.L. and Kim, P. (2008) Temperature-Dependent Transport in Suspended Graphene. Physical Review Letters, 101, Article ID: 096802.
http://dx.doi.org/10.1103/PhysRevLett.101.096802
[16] Leenaerts, O., Partoens, B. and Peeters, F.M. (2009) Water on Graphene: Hydrophobicity and Dipole Moment Using Density Functional Theory. Physical Review B, 79, Article ID: 235440.
http://dx.doi.org/10.1103/PhysRevB.79.235440
[17] Taherian, F., Marcon, V., van der Vegt, N.F.A. and Leroy, F. (2013) What Is the Contact Angle of Water on Graphene? Langmuir, 29, 1457-1465.
[18] Shin, Y.J., Wang, Y.Y., Huang, H., et al. (2010) Surface-Energy Engineering of Graphene. Langmuir, 26, 3798-3802.
http://dx.doi.org/10.1021/la100231u
[19] Zong, Z., Chen, C.-L., Dokmeci, M.R. and Wan, K.-T. (2010) Direct Measurement of Graphene Adhesion on Silicon Surface by Intercalation of Nanoparticles. Journal of Applied Physics, 107, Article ID: 026104.
http://dx.doi.org/10.1063/1.3294960
[20] Rafiee, J., Mi, X., Gullapalli, H., et al. (2012) Wetting Transparency of Graphene. Nature Materials, 11, 217-222.
http://dx.doi.org/10.1038/nmat3228
[21] Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V. and Geim, A.K. (2005) Two-Dimensional Atomic Crystals. Proceedings of the National Academy of Sciences of the United States of America, 102, 10451-10453.
http://dx.doi.org/10.1073/pnas.0502848102
[22] Blake, P., Hill, E.W., Neto, A.H.C., Novoselov, K.S., Jiang, D., Yang, R., Booth, T.J. and Geim, A.K. (2007) Making Graphene Visible. Applied Physics Letters, 91, Article ID: 063124.
http://dx.doi.org/10.1063/1.2768624
[23] Ferrari, A.C., Meyer, J.C., Scardaci, V., et al. (2006) Raman Spectrum of Graphene and Graphene Layers. Physical Review Letters, 97, Article ID: 187401.
http://dx.doi.org/10.1103/PhysRevLett.97.187401
[24] Calizo, I., Balandin, A.A., Bao, W., Miao, F. and Lau, C.N. (2007) Temperature Dependence of the Raman Spectra of Graphene and Graphene Multilayers. Nano Letters, 7, 2645-2649.
http://dx.doi.org/10.1021/nl071033g
[25] Shih, C.-J., Strano, M.S. and Blankschtein, D. (2013) Wet-ting Translucency of Graphene. Nature Materials, 12, 866-869.
http://dx.doi.org/10.1038/nmat3760
[26] Zhang, X., Wan, S., Pu, J., Wang, L. and Liu, X. (2011) Highly Hydrophobic and Adhesive Performance of Graphene Films. Journal of Materials Chemistry, 21, 12251-12258.
http://dx.doi.org/10.1039/c1jm12087e
[27] Yang, J., Zhang, Z., Men, X., Xu, X. and Zhu, X. (2010) Reversible Superhydrophobicity to Superhydrophilicity Switching of a Carbon Nanotube Film via Alternation of UV Irradiation and Dark Storage. Langmuir, 26, 10198-10202.
http://dx.doi.org/10.1021/la100355n
[28] Rafiee, J., Rafiee, M.A., Yu, Z.-Z. and Koratkar, N. (2010) Superhy-drophobic to Superhydrophilic Wetting Control in Graphene Films. Advanced Materials, 22, 2151-2154.
http://dx.doi.org/10.1002/adma.200903696
[29] Wu, C.K., Wang, G.J. and Dai, J.F. (2013) Controlled Functio-nalization of Graphene Oxide through Surface Modification with Acetone. Journal of Materials Science, 48, 3436-3442.
http://dx.doi.org/10.1007/s10853-012-7131-6
[30] Kim, B.H., Kim, J.Y., Jeong, S.-J., et al. (2010) Surface Energy Modification by Spin-Cast, Large-Area Graphene Film for Block Copolymer Lithography. ACS Nano, 4, 5464-5470.
http://dx.doi.org/10.1021/nn101491g
[31] Fowkes, F.M. (1964) Attractive Forces at Interfaces. Industrial & Engineering Chemistry Research, 56, 40-52.
http://dx.doi.org/10.1021/ie50660a008
[32] Kobayashi, M., Terayama, Y., Yamaguchi, H., et al. (2012) Wettability and Antifouling Behavior on the Surfaces of Superhydrophilic Polymer Brushes. Langmuir, 28, 7212-7222.
http://dx.doi.org/10.1021/la301033h
[33] Das, S.C., Larson, I., Morton, D.A.V. and Stewart, P.J. (2011) Deter-mination of the Polar and Total Surface Energy Distributions of Particulates by Inverse Gas Chromatography. Langmuir, 27, 521-523.
http://dx.doi.org/10.1021/la104135z
[34] Wang, S.R., Zhang, Y., Abidi, N. and Cabrales, L. (2009) Wettability and Surface Free Energy of Graphene Films. Langmuir, 25, 11078-11081.
http://dx.doi.org/10.1021/la901402f
[35] Menzel, R., Lee, A., Bismarck, A. and Shaffer, M.S.P. (2009) Inverse Gas Chromatography of As-Received and Modified Carbon Nanotubes. Langmuir, 25, 8340-8348.
http://dx.doi.org/10.1021/la900607s
[36] Gutmann, V. (1978) The Donor-Acceptor Approach to Molecular Inte-ractions. Plenum Press, New York and London.
[37] Meyer, J.C., Kisielowski, C., Erni, R., Rossell, M.D., Crommie, M.F. and Zettl, A. (2008) Direct Imaging of Lattice Atoms and Topological Defects in Graphene Membranes. Nano Letters, 8, 3582-3586.
http://dx.doi.org/10.1021/nl801386m
[38] Soler, J.M., Baro, A.M., Garc, N. and Rohrer, H. (1986) Interatomic Forces in Scanning Tunneling Microscopy: Giant Corrugations of the Graphite Surface. Physical Review Letters, 57, 444-447.
http://dx.doi.org/10.1103/PhysRevLett.57.444
[39] Berger, C., Song, Z., Li, X., et al. (2006) Electronic Con-finement and Coherence in Patterned Epitaxial Graphene. Science, 312, 1191-1196.
http://dx.doi.org/10.1126/science.1125925
[40] Dresselhaus, M.S., Dresselhaus, G., Jorio, A., Souza Filho, A.G., Pimenta, M.A. and Saito, R. (2002) Single Nanotube Raman Spectroscopy. Accounts of Chemical Research, 35, 1070-1078.
http://dx.doi.org/10.1021/ar0101537
[41] Stankovich, S., Piner, R.D., Chen, X., Wu, N., Nguyen, S.T. and Ruoff, R.S. (2006) Stable Aqueous Dispersions of Graphitic Nanoplatelets via the Reduction of Exfoliated Graphite Oxide in the Presence of Poly(sodium 4-styrenesulfonate). Journal of Materials Chemistry, 16, 155-158.
http://dx.doi.org/10.1039/B512799H
[42] Stankovich, S., Dikin, D.A., Piner, R.D., et al. (2007) Synthesis of Graphene-Based Nanosheets via Chemical Reduction of Exfoliated Graphite Oxide. Carbon, 45, 1558-1565.
http://dx.doi.org/10.1016/j.carbon.2007.02.034
[43] Ruoff, R. (2008) Graphene: Calling All Chemists. Nature Nanotechnology, 3, 10-11.
http://dx.doi.org/10.1038/nnano.2007.432
[44] Ma, X., Wigington, B. and Bouchard, D. (2010) Fullerene C60: Surface Energy and Interfacial Interactions in Aqueous Systems. Langmuir, 26, 11886-11893.
http://dx.doi.org/10.1021/la101109h
[45] Raj, R., Maroo, S.C. and Wang, E.N. (2013) Wettability of Graphene. Nano Letters, 13, 1509-1515.
http://dx.doi.org/10.1021/nl304647t
[46] Giddings, J.C. and Keller, R.A. (1969) Advances in Chromatography. CRC Press, Boca Raton.
[47] Conder, J.R. and Young, C.L. (1979) Physicochemical Measurement by Gas Chromato-graphy. John Wiley and Sons, Chichester.
[48] Donnet, J.B., Park, S.J. and Brendle, M. (1992) The Effect of Micro-wave Plasma Treatment on the Surface Energy of Graphite as Measured by Inverse Gas Chromatography. Carbon, 30, 263-268.
http://dx.doi.org/10.1016/0008-6223(92)90089-F
[49] Papirer, E., Brendle, E., Ozil, F. and Balard, H. (1999) Comparison of the Surface Properties of Graphite, Carbon Black and Fullerene Samples, Measured by Inverse Gas Chromatography. Carbon, 37, 1265-1274.
http://dx.doi.org/10.1016/S0008-6223(98)00323-6
[50] Thielmann, F. (2004) Introduction into the Characterisation of Porous Materials by Inverse Gas Chromatography. Journal of Chromatography A, 1037, 115-123.
http://dx.doi.org/10.1016/j.chroma.2004.03.060
[51] Lavielle, L. and Schultz, J. (1991) Surface Properties of Carbon Fibers Determined by Inverse Gas Chromatography: Role of Pretreatment. Langmuir, 7, 978-981.
http://dx.doi.org/10.1021/la00053a027
[52] Zhang, X.L., Yang, D., Xu, P., Wang, C.C. and Du, Q.G. (2007) Characterizing the Surface Properties of Carbon Nanotubes by Inverse Gas Chromatography. Journal of Materials Science, 42, 7069-7075.
http://dx.doi.org/10.1007/s10853-007-1536-7
[53] Díaz, E., Ordóñez, S. and Vega, A. (2007) Adsorption of Vo-latile Organic Compounds onto Carbon Nanotubes, Carbon Nanofibers, and High-Surface-Area Graphites. Journal of Colloid and Interface Science, 305, 7-16.
http://dx.doi.org/10.1016/j.jcis.2006.09.036
[54] Menzel, R., Bismarck, A. and Shaffer, M.S.P. (2012) Deconvo-lution of the Structural and Chemical Surface Properties of Carbon Nanotubes by Inverse Gas Chromatography. Carbon, 50, 3416-3421.
http://dx.doi.org/10.1016/j.carbon.2012.02.094
[55] Lazar, P., Karlický, F., Jurečka, P., Kocman, M., Otyepková, E., Šafářová, K. and Otyepka, M. (2013) Adsorption of Small Organic Molecules on Graphene. Journal of the American Chemical Society, 135, 6372-6377.
http://dx.doi.org/10.1021/ja403162r
[56] Dai, J.F., Wang, G.J. and Wu, C.K. (2014) Investigation of the Surface Properties of Graphene Oxide and Graphene by Inverse Gas Chromatography. Chromatographia, 77, 299-307.
http://dx.doi.org/10.1007/s10337-013-2597-1
[57] Dai, J.F., Wang, G.J., Ma, L. and Wu, C.K. (2014) Study on the Surface Energies and Dispersibility of Graphene Oxide and Its Derivatives. Journal of Materials Science, 50, 3895-3907.
http://dx.doi.org/10.1007/s10853-015-8934-z