靶向单胺受体及谷氨酸系统抗抑郁药的研究进展
Research Progress of the Antidepressants Targeting the Monomine Receptors and Glutamate System
DOI: 10.12677/PI.2016.52007, PDF, HTML, XML,  被引量 下载: 2,452  浏览: 6,259 
作者: 任莹莹, 周良良, 吴华丽, 尚 靖:中国药科大学江苏省中药评价与转化重点实验室,江苏 南京
关键词: 抑郁症抗抑郁药单胺受体谷氨酸系统Depression Antidepressant Monoamine Receptors Glutamate System
摘要: 抑郁症是一种精神疾病,伴随着心境持久低落,认知损伤和行为改变。单胺神经递质再摄取抑制剂是临床主流抗抑郁药,但有起效慢、治疗抵抗等局限性。随着抑郁症发病机制研究的不断深入,抗抑郁药物种类层出不穷,其中调节单胺受体(5-羟色胺、多巴胺及肾上腺素受体等)和谷氨酸受体(NMDA、AMPA及代谢型谷氨酸受体)、抑制谷氨酸释放的药物,因具有快速起效等优势而逐渐成为抗抑郁药研发的关注热点。本文主要对近年来已上市和正在临床研究的靶向单胺受体和谷氨酸系统的抗抑郁药进行综述,从而为新型抗抑郁药物的研发方向提供借鉴。
Abstract: Depression is a kind of psychiatric disorders and is characterized by persistent low mood, cognitive impairment and behavioral change. Monoamine neurotransmitter reuptake inhibitors are the most common used antidepressants in clinic, but it needs weeks to work and depressed patients may show resistance to the treatment. With the research on the pathogenesis of depression progressing, species of antidepressants have emerged. Agents regulating monoamine (serotonin, dopamine, noradrenaline, etc.) receptors and glutamate receptors including NMDA receptor, AMPA receptor and metabotropic glutamate receptor and agents that inhibit glutamate release gradually become antidepressant research hotspots with the advantage of rapid-onset. Here, antidepressants targeting monoamine receptors and glutamate system in the market and on clinical trial are reviewed, thus providing guidance for the developing trends of new type antidepressants.
文章引用:任莹莹, 周良良, 吴华丽, 尚靖. 靶向单胺受体及谷氨酸系统抗抑郁药的研究进展[J]. 药物资讯, 2016, 5(2): 38-44. http://dx.doi.org/10.12677/PI.2016.52007

参考文献

[1] Clayton, A.H., Tourian, K.A., Focht, K., et al. (2015) Desvenlafaxine 50 and 100 mg/d versus Placebo for the Treatment of Major Depressive Disorder: A Phase 4, Randomized Controlled Trial. Journal of Clinical Psychiatry, 76, 562- 569.
http://dx.doi.org/10.4088/JCP.13m08978
[2] Palmer, E.C., Binns, L.N. and Carey, H. (2014) Levomilnacipran. Annals of Pharmacotherapy, 48, 1030-1039.
http://dx.doi.org/10.1177/1060028014535074
[3] 张方喜, 张雪梅, 蒋王林, 等. 三重再摄取抑制类抗抑郁药的研究进展和盐酸安舒法辛的发现[J]. 中国新药杂志, 2014, 23(16): 1918-1923.
[4] Scorza, M.C., Lladó-Pelfort, L., et al. (2011) Preclinical and Clinical Characterization of the Selective Serotonin-1A Receptor Antagonist DU-125530 for Antide-pressant Treatment. British Journal of Pharmacology, 167, 1021-1034.
http://dx.doi.org/10.1111/j.1476-5381.2011.01770.x
[5] Arif, K., Cutler, A.J., Kajdasz, D.K., et al. (2011) A Ran-domized, Double-Blind, Placebo-Controlled, 8-Week Study of Vilazodone, a Serotonergic Agent for the Treatment of Major Depressive Disorder. Journal of Clinical Psychiatry, 72, 441-447.
http://dx.doi.org/10.4088/JCP.10m06596
[6] Papakostas, G.I. and Fava, M. (2007) A Meta-Analysis of Clinical Trials Comparing the Serotonin (5HT)-2 Receptor Antagonists Trazodone and Nefazodone with Selective Serotonin Reuptake In-hibitors for the Treatment of Major Depressive Disorder. European Psychiatry: The Journal of the Association of European Psychiatrists, 22, 444-447.
http://dx.doi.org/10.1016/j.eurpsy.2007.01.1220
[7] Tardito, D., Molteni, R., Popoli, M., et al. (2012) Synergistic Mechanisms Involved in the Antidepressant Effects of Agomelatine. European Neuropsychopharmacology: The Journal of the European College of Neuropsychopharmacology, 22, S482-S486.
http://dx.doi.org/10.1016/j.euroneuro.2012.06.016
[8] Corruble, E., De Bodinat, C., Belaïdi, C., et al. (2013) Efficacy of Agomelatine and Escitalopram on Depression, Subjective Sleep and Emotional Experiences in Patients with Major Depressive Disorder: A 24-wk Randomized Controlled, Double-Blind Trial. International Journal of Neuropsychopharmacology, 16, 2219-2234.
http://dx.doi.org/10.1017/S1461145713000679
[9] Citrome, L. (2016) Vortioxetine for Major Depressive Disorder: An Indirect Comparison with Duloxetine, Escitalopram, Levomilnacipran, Sertraline, Venlafaxine, and Vilazodone, Using Number Needed to Treat, Number Needed to Harm, and Likelihood to Be Helped or Harmed. Journal of Affective Disorders, 196, 225-233.
http://dx.doi.org/10.1016/j.jad.2016.02.042
[10] Sanchez, C., Asin, K.E. and Artigas, F. (2014) Vortioxetine, a Novel Antidepressant with Multimodal Activity: Review of Preclinical and Clinical Data. Pharmacology & Therapeutics, 145, 43-57.
http://dx.doi.org/10.1016/j.pharmthera.2014.07.001
[11] Bétry, C., Overstreet, D., Haddjeri, N., et al. (2015) A 5-HT 3, Receptor Antagonist Potentiates the Behavioral, Neurochemical and Electrophysiological Actions of an SSRI Antidepressant. Pharmacology Biochemistry & Behavior, 131, 136-142.
http://dx.doi.org/10.1016/j.pbb.2015.02.011
[12] Gupta, D., Radhakrishnan, M., Thangaraj, D., et al. (2014) Antidepressant and Anti-Anxiety Like Effects of 4i (N-(3- Chlo-ro-2-Methylphenyl) Quinoxalin-2-Carboxamide), a Novel 5-HT 3, Receptor Antagonist in Acute and Chronic Neurobehavioral Rodent Models. European Journal of Pharmacology, 735, 59-67.
http://dx.doi.org/10.1016/j.ejphar.2014.04.008
[13] Baldev Kumar, G., Ankur, J., Arghya Kusum, D., et al. (2013) An-tidepressant—Like Activity of 2-(4-Phenylpiperazin- 1-yl)-1, 8-Naphthyridine-3-Carboxylic Acid (7a), a 5-HT3 Receptor Antagonist in Behaviour Based Rodent Models: Evidence for the Involvement of Serotonergic System. Pharmacology Bio-chemistry & Behavior, 109, 91-97.
http://dx.doi.org/10.1016/j.pbb.2013.05.006
[14] Nikiforuk, A. (2015) Targeting the Serotonin 5-HT7 Receptor in the Search for Treatments for CNS Disorders: Rationale and Progress to Date. CNS Drugs, 29, 1-11.
http://dx.doi.org/10.1007/s40263-015-0236-0
[15] Westrich, L., Haddjeri, N., Dkhissi-Benyahya, O., et al. (2015) In-volvement of 5-HT 7, Receptors in Vortioxetine’s Modulation of Circadian Rhythms and Episodic Memory in Rodents. Neuropharmacology, 89, 382-390.
http://dx.doi.org/10.1016/j.neuropharm.2014.10.015
[16] Kenji, M., Haruhiko, S., Hitomi, A., et al. (2014) Brexpiprazole I: In Vitro and in Vivo Characterization of a Novel Serotonin-Dopamine Activity Modulator. The Journal of Pharmacology & Experimental Therapeutics, 350, 589-604.
http://dx.doi.org/10.1124/jpet.114.213793
[17] Oosterhof, C.A., Mostafa, E.M. and Pierre, B. (2014) Acute Effects of Brexpiprazole on Serotonin, Dopamine, and Norepinephrine Systems: An in Vivo Electrophysiologic Characterization. The Journal of Pharmacology & Experimental Therapeutics, 351, 585-595.
http://dx.doi.org/10.1124/jpet.114.218578
[18] Thase, M.E., Youakim, J.M., Skuban, A., et al. (2015) Efficacy and Safety of Adjunctive Brexpiprazole 2 mg in Major Depressive Disorder: A Phase 3, Randomized, Placebo-Controlled Study in Patients with Inadequate Response to Antidepressants. Journal of Clinical Psychiatry, 76, 1224-1231.
[19] Noriko, Y., Takashi, F. and Kenji, H. (2015) Improvement of Dizocilpine-Induced Social Recognition Deficits in Mice by Brexpiprazole, a Novel Serotonin-Dopamine Activity Modulator. European Neuropsychopharmacology, 25, 356- 364.
http://dx.doi.org/10.1016/j.euroneuro.2014.12.014
[20] De Boer, T. (1996) The Pharmacologic Profile of Mirtazapine. Journal of Clinical Psychiatry, 57, 19-25.
[21] Dahal, S., Ojha, S.I., Chapagain, M. and Tulachan, P. (2014) Efficacy and Tolerability of Mirtazapine versus Sertraline: An Open, Randomized Study in Acute Treatment in Patients with Major De-pressive Disorder. Journal of Psychiatrists’ Association of Nepal, 3, 29-34.
http://dx.doi.org/10.3126/jpan.v3i1.11349
[22] Machado-Vieira, R., Salvadore, G., Ibrahim, L.A., Diaz-Granados, N. and Zarate Jr., C.A. (2009) Targeting Glutamatergic Signaling for the Development of Novel Therapeutics for Mood Disorders. Current Pharmaceutical Design, 15, 1595-1611.
[23] Chaki, S., Ago, Y., Palucha-Paniewiera, A., Matrisciano, F. and Pilc, A. (2012) mGlu2/3 and mGlu5 Receptors: Potential Targets for Novel Antidepressants. Neuropharmacology, 66, 40-52.
[24] Niciu, M.J., Ionescu, D.F., Richards, E.M. and Zarate Jr., C.A. (2014) Glutamate and Its Receptors in the Path-ophysiology and Treatment of Major Depressive Disorder. Journal of Neural Transmission, 121, 907-924.
http://dx.doi.org/10.1007/s00702-013-1130-x
[25] Miller, O.H., Moran, J.T. and Hall, B.J. (2016) Two Cellular Hy-potheses Explaining the Initiation of Ketamine’s Antidepressant Actions: Direct Inhibition and Disinhibition. Neurophar-macology, 100, 17-26.
http://dx.doi.org/10.1016/j.neuropharm.2015.07.028
[26] Li, N., Lee, B., Liu, R.J., et al. (2010) mTOR-Dependent Synapse Formation Underlies the Rapid Antidepressant Effects of NMDA Antagonists. Science, 329, 959-964.
http://dx.doi.org/10.1126/science.1190287
[27] Li, N., Liu, R.J., Dwyer, J.M., et al. (2011) Glutamate N-Methyl-D-Aspartate Receptor Antagonists Rapidly Reverse Behavioral and Synaptic Deficits Caused by Chronic Stress Exposure. Biological Psychiatry, 69, 754-761.
http://dx.doi.org/10.1016/j.biopsych.2010.12.015
[28] Regan, M.C., Romero-Hernandez, A. and Furukawa, H. (2015) A Structural Biology Perspective on NMDA Receptor Pharmacology and Function. Current Opinion in Structural Biology, 33, 68-75.
http://dx.doi.org/10.1016/j.sbi.2015.07.012
[29] Peng, W.F., Ding, J., Li, X., Fan, F., Zhang, Q.-Q. and Wang, X. (2015) N-Methyl-D-Aspartate Receptor NR2B Subunit Involved in Depression-Like Behaviours in Lithium Chloride-Pilocarpine Chronic Rat Epilepsy Model. Epilepsy Research, 119, 77-85.
http://dx.doi.org/10.1016/j.eplepsyres.2015.09.013
[30] Lobna, I., Nancy, D.G., Libby, J., et al. (2012) A Randomized, Placebo-Controlled, Crossover Pilot Trial of the Oral Selective NR2B Antagonist MK-0657 in Patients with Treat-ment-Resistant Major Depressive Disorder. Journal of Clinical Psychopharmacology, 32, 551-557.
http://dx.doi.org/10.1097/JCP.0b013e31825d70d6
[31] Zanos, P., Piantadosi, S.C., Wu, H.Q., et al. (2015) The Prodrug 4-Chlorokynurenine Causes Ketamine-Like Antidepressant Effects, but Not Side Effects, by NMDA/GlycineB-Site Inhibition. The Journal of Pharmacology & Experimental Therapeutics, 355, 76-85.
http://dx.doi.org/10.1124/jpet.115.225664
[32] Jing, D., Machado-Vieira, R., Maeng, S., Martinowich, K., Manji, H.K. and Zarate Jr., C.A. (2006) Enhancing AMPA to NMDA Throughput as a Convergent Mechanism for Antidepressant Action. Drug Discovery Today: Therapeutic Strategies, 3, 519-526.
http://dx.doi.org/10.1016/j.ddstr.2006.11.012
[33] Duman, R.S., Li, N., Liu, R.J., Duric, V. and Aghajanian, G. (2011) Signaling Pathways Underlying the Rapid Antidepressant Actions of Ketamine. Neuropharmacology, 62, 35-41.
http://dx.doi.org/10.1016/j.neuropharm.2011.08.044
[34] O’Neill, M.J., David, B., Zimmerman, D.M. and Nisenbaum, E.S. (2004) AMPA Receptor Potentiators for the Treatment of CNS Disorders. Current Drug Target-CNS & Neurological Disorders, 3, 181-194.
http://dx.doi.org/10.2174/1568007043337508
[35] Nicoletti, F., Bruno, V., Ngomba, R.T., Gradini, R. and Battaglia, G. (2014) Metabotropic Glutamate Receptors as Drug Targets: What’s New? Current Opinion in Pharmacology, 20, 89-94.
[36] Pałucha-Poniewiera, A., Wierońska, J.M., Brański, P., Burnat, G., Chruścicka, B. and Pilc, A. (2013) Is the mGlu5 Receptor a Possible Target for New Antidepressant Drugs? Pharmacological Reports, 65, 1506-1511.
http://dx.doi.org/10.1016/S1734-1140(13)71511-1
[37] Lothar, L., Porter, R.H., Scharf, S.H., et al. (2015) Pharmacol-ogy of Basimglurant (RO4917523, RG7090), a Unique Metabotropic Glutamate Receptor 5 Negative Allosteric Modulator in Clinical Development for Depression. The Journal of Pharmacology & Experimental Therapeutics, 353, 213-233.
[38] Salardini, E., Zeinoddini, A., Mohammadinejad, P., et al. (2016) Riluzole Combination Therapy for Moder-ate-to-Se- vere Major Depressive Disorder: A Randomized, Double-Blind, Placebo-Controlled Trial. Journal of Psychiatric Re-search, 75, 24-30.