Mg-Gd-Y-Nd-Zr合金的微观组织和力学性能
Microstructures and Mechanical Properties of Mg-Gd-Y-Nd-Zr Alloy
DOI: 10.12677/MS.2016.63021, PDF, HTML, XML, 下载: 2,100  浏览: 4,797 
作者: 谭 军, 邓运来:中南大学,轻合金研究院,湖南 长沙 ;石洪吉:中南大学,材料科学与工程学院,湖南 长沙
关键词: 镁合金显微组织力学性能热处理Magnesium Alloy Microstructure Mechanical Properties Heat Treatment
摘要: 利用光学金相显微镜、扫描电镜、X射线衍射和透射电镜等研究了名义成分为Mg-8.0Gd-2.5Y-0.5Nd-2.0Zr的合金的显微组织,测试了合金的力学性能。研究表明,Mg-8.0%Gd-2.5%Y-0.5%Nd-2.0%Zr合金的铸态组织主要由α-Mg基体和主要沿晶界分布的第二相Mg5Gd和Mg24Y5组成,固溶处理后,Mg5Gd和Mg24Y5相基本消失,再经时效处理后,合金达到较好的力学性能,其室温、250℃和300℃的抗拉强度分别为312.04 MPa,271.99 MPa和199.81 MPa,其对应的延伸率分别为:3.4%,7.0%和12.7%。
Abstract: The microstructure of magnesium alloy whose nominal composition is Mg-8.0Gd-2.5Y-0.5Nd-2.0Zr was investigated by means of optical microscopy, scanning electron microscopy, X-ray texture analysis and transmission electron microscopy, and the mechanical properties were obtained. The results show that the as-cast microstructures of Mg-8.0%Gd-2.5%Y-0.5%Nd-2.0%Zr alloy consists of α-Mg matrix and lamellar second-phase (Mg5Gd and Mg24Y5 phase) which distributes around α-Mg matrix. The Mg5Gd and Mg24Y5 phase basically disappeared after solution treatment. Then by aging treatment, alloys reach a good mechanical property. The mechanical properties of studied alloy at room temperature, 250˚C and 300˚C reach 312.04 MPa, 271.99 MPa and 199.81 MPa; the corresponding elongations are 3.4%, 7.0% and 12.7%.
文章引用:谭军, 石洪吉, 邓运来, 张凯, 官立群. Mg-Gd-Y-Nd-Zr合金的微观组织和力学性能[J]. 材料科学, 2016, 6(3): 163-172. http://dx.doi.org/10.12677/MS.2016.63021

参考文献

[1] 李元元, 张卫文, 刘英, 等. 镁合金的发展动态和前景展望[J]. 特种铸造及有色合金, 2004(1): 14-17.
[2] 崔晓鹏, 张效宾, 胡景辉, 等. Mg-4Al-0.29Mn-0.97Gd合金的热压缩变形行为[J]. 特种铸造及有色合金, 2014, 34(6): 669-672.
[3] Yuuji, N., Takuhiro, N., Shigeru, I., et al. (1994) Aging Characteristics and Tensile Properties of Mg-Gd-Nd-Zr and Mg-Dy-Nd-Zr Alloys. The Japan Institute of Light Metals, 44, 555-561.
[4] Rokhlin, L.L., Nikitina, N.I. and Dobatkina, T.V. (1996) Solid-State Phase Equilibria in the Mg Corner of the Mg-Gd-Sm Phase Diagram. Journal of Alloys and Compounds, 239, 209-213.
http://dx.doi.org/10.1016/0925-8388(96)02239-6
[5] Smola, B. and Stulıková, I. (2004) Equilibrium and Tran-sient Phases in Mg-Y-Nd Ternary Alloys. Journal of Alloys and Compounds, 381, L1-L2.
http://dx.doi.org/10.1016/j.jallcom.2004.02.049
[6] Nie, J.F., Gao, X. and Zhu, S. (2005) Enhanced Age Hard-ening Response and Creep Resistance of Mg-Gd Alloys Containing Zn. Scripta Materialia, 53, 1049-1053.
http://dx.doi.org/10.1016/j.scriptamat.2005.07.004
[7] Apps, P.J., Karimzadeh, H., King, J.F., et al. (2003) Pre-cipitation Reactions in Magnesium-Rare Earth Alloys Containing Yttrium, Gadolinium or Dysprosium. Scripta Mate-rialia, 48, 1023-1028.
http://dx.doi.org/10.1016/S1359-6462(02)00596-1
[8] 余琨, 黎文献, 王日初, 等. 变形镁合金的研究、开发及应用[J]. 中国有色金属学报, 2003, 13(2): 277-288.
[9] 张新明, 彭卓凯, 陈健美, 等. 耐热镁合金及其研究进展[J]. 中国有色金属学报, 2004, 14(9): 1443-1450..
[10] Baker, C., Lorimer, G.W. and Unsworth, W. (1987) Pro-ceedings of London Conference on Magnesium Technology. The Institute of Metals, London, 1-141.
[11] 闵学刚, 孙扬善, 袁广银. Bi, Sb, Ca和Si对AZ91合金的组织和性能的影响. 中国有色金属学报[J], 2002, 12(1): 166-171.
[12] 张新明, 陈健美. 高强耐热稀土镁合金[P]. 中国专利, CN 200610031169.9. 2006-07-19.
[13] Su-zuki, M., Sato, H., Maruyama, K., et al. (1998) Creep Behavior and Deformation Microstructures of Mg-Y Alloys at 550 K. Materials Science and Engineering: A, 252, 248-255.
http://dx.doi.org/10.1016/S0921-5093(98)00662-5
[14] 张新明, 陈健美, 邓运来, 等. Mg-Gd-Y-(Mn, Zr)合金的显微组织和力学性能[J]. 中国有色金属学报, 2006, 16(2): 219-227.
[15] 陈健美, 张新明, 邓运来, 等. 镁合金熔炼的热力学[J]. 中南大学学报: 自然科学版, 2006, 37(3): 427-432.
[16] Kawabata, T., Matsuda, K., Kamado, S., et al. (2003) HRTEM Observation of the Precipitates in Mg-Gd-Y-Zr Alloy. Materials Science Forum, 303, 419-425.
http://dx.doi.org/10.4028/www.scientific.net/msf.419-422.303
[17] Anthony, A.I., Kamado, S. and Kojima, Y. (2005) Aging Characteristics and High Temperature Tensile Properties of Mg-Gd-Y-Zr Alloys. Materials Transactions, 42, 1206-1211.
[18] Socjusz-Podosek, M. and Lityńska, L. (2003) Effect of Yttrium on Structure and Mechanical Properties of Mg Alloys. Materials Chemistry and Physics, 80, 472-475.
http://dx.doi.org/10.1016/S0254-0584(02)00549-7
[19] 何上明. Mg-Gd-Y-Zr(-Ca)合金的微观组织演变、性能和断裂行为研究[D]: [博士学位论文]. 上海: 上海交通大学, 2007.
[20] Smola, B., Stulı́ková, I., Buch, F.V., et al. (2002) Structural Aspects of High Performance Mg Alloys Design. Materials Science & Engineering A, 324, 113-117.
http://dx.doi.org/10.1016/S0921-5093(01)01291-6