阳极氧化黄铜构建纳米片氧化物薄膜及其光电化学性能
Preparation of Nanosheet Copper Oxide Films by Anodic Oxidation of a Brass and Their Photoelectrochemical Performance
DOI: 10.12677/MS.2016.63023, PDF, HTML, XML, 下载: 2,127  浏览: 5,598  国家自然科学基金支持
作者: 胡 浩, 肖仕清, 许 敏, 牛振江:浙江师范大学物理化学研究所,固体表面反应化学浙江省重点实验室,先进催化材料教育部重点实验室,浙江 金华
关键词: 铜锌合金NaOH氧化膜光电流Zinc-Copper Alloy NaOH Oxide Film Photocurrent
摘要: 在55℃的1.0~10.0 mol∙L−1 NaOH溶液中,通过10 mA∙cm−2恒电流阳极氧化和空气中150℃热处理,在黄铜基底表面制备出具有纳米颗粒或纳米片形貌的铜氧化物薄膜。利用XRD、SEM和Raman光谱等分析了氧化膜的结构和形貌。在0.1 mol∙L−1 Na2SO4溶液中测试了氧化膜在零偏压下的可见光光电流。结果表明,黄铜在3.0~5.0 mol∙L−1的NaOH溶液中经阳极氧化,可制备出具有纳米片形貌的Cu2O/CuO复合氧化物薄膜,在零偏压下的光电流密度分别为1.9和1.4 μA∙cm−2
Abstract: Copper oxide films with nanoparticles or nanosheets morphologies were prepared on the surface of brass substrates through anodic oxidation of the brass at 10 mA∙cm−2 in 1.0 - 10.0 mol∙L−1 NaOH solutions, at 55˚C, then heated at 150˚C in air. The structures and morphologies of the oxide films were analysed with XRD, SEM and Raman spectroscopy. The photocurrents of the films were tested in 0.1 mol∙L−1 Na2SO4 solution under a visible light and zero bias. Results show that nanosheet CuO/Cu2O composite films can be obtained by anodic oxidation of the brass in 3.0 - 5.0 mol∙L−1 NaOH solutions, and the films generate the photocurrents of 1.9 and 1.4 μA∙cm−2, respectively, at zero bias.
文章引用:胡浩, 肖仕清, 许敏, 牛振江. 阳极氧化黄铜构建纳米片氧化物薄膜及其光电化学性能[J]. 材料科学, 2016, 6(3): 181-188. http://dx.doi.org/10.12677/MS.2016.63023

参考文献

[1] Hara, M., Kondo, T., Komoda, M., Ikeda, S., Shinohara, K., Tanaka, A., Kondo, J.N. and Domen, K. (1998) Cu2O as a Photocatalyst for Overall Water Splitting under Visible Light Irradiation. Chemical Communications, No. 3, 357-358.
http://dx.doi.org/10.1039/a707440i
[2] Hai, Z., Zhu, C., Huang, J., Liu, H. and Chen, J. (2010) Controllable Synthesis of CuO Nanowires and Cu2O Crystals with Shape Evolution via γ-Irradiation. Inorganic Chemistry, 16, 7217-7219.
http://dx.doi.org/10.1021/ic101143u
[3] 罗晶晶, 范旭良, 马荣伟, 等. 超薄SnO2修饰Cu2O多孔薄膜的可见光光电化学性能[J]. 电镀与涂饰, 2015, 34(12): 650-655.
[4] 云广平, 梁燕萍, 吴振森. Ni-P/TiO2/Cu2O复合膜的制备及其可见光催化活性研究[J]. 电镀与涂饰, 2011, 30(2): 12-14.
[5] Jiang, C.X., Hu, Y.X., Dong, W., Zheng, F.G., Su, X.D., Fang, L. and Shen, M.R. (2014) Bias-Determined Cu2O and Cu Growth on TiO2 Surface and Their Photoelectrochemical Properties. Acta Physico-Chimica Sinica, 10, 1867-1875.
[6] Chang, Y.N., Zhang, M., Xia, L., Zhang, J. and Xing, G. (2012) The Toxic Effects and Mechanisms of CuO and ZnO Nano-particles. Materials, 12, 2850-2871.
http://dx.doi.org/10.3390/ma5122850
[7] Ramı́rez Ortiz, J., Ogura, T., Me-dina Valtierra, J., Acosta Ortiz, S.A.E., Pedro, B., Antonio de los Reyes, J. and Lara, V.H. (2001) A Catalytic Applica-tion of Cu2O and CuO Films Deposited over Fiberglass. Applied Surface Science, 3, 177-184.
http://dx.doi.org/10.1016/S0169-4332(00)00822-9
[8] Selvaraj, S., Ponmariappan, S., Natesan, M. and Pal-aniswamy, N. (2003) Dezincification of Brass and Its Control—An overview. Corrosion Reviews, 1, 41-74.
http://dx.doi.org/10.1515/corrrev.2003.21.1.41
[9] 李勇, 朱应禄. 黄铜脱锌腐蚀的研究进展[J]. 腐蚀与防护, 2006, 27(5): 222-226.
[10] 孟新静, 周琼宇, 钟庆东. 阳极钝化电位对黄铜表面钝化膜半导体性能的影响[J]. 表面技术, 2014, 43(4): 12-16.
[11] Morales, J., Esparza, P., Fernandez, G.T., Gonzalez, S., Garcia, J.E., Caceres, J., Salvarezza, R.C. and Arvia, A.J. (1995) A Comparative Study on the Passivation and Localized Corrosion of and Brass in Borate Buffe Solutions Containing Sodium Chloride-II.X-Ray Photoelectron and Auger Electron Apectroscopy Data. Corrosion Science, 2, 231- 239.
http://dx.doi.org/10.1016/0010-938X(94)00109-J
[12] Biton, M., Salitra, G., Aurbach, D., Mishkov, P. and Ilzycer, D. (2006) On the Electrochemical Behavior and Passivation of Copper and Brass  ( Cu70 ∕ Zn30 )  Electrodes in Concentrated Aqueous KOH Solutions. Journal of the Electrochemical Society, 12, B555-B565.
http://dx.doi.org/10.1149/1.2360735
[13] Soejima, T., Takada, K. and Ito, S. (2013) Alkaline Vapor Oxidation Synthesis and Electrocatalytic Activity toward Glucose Oxidation of CuO/ZnO Composite Nanoarrays. Ap-plied Surface Science, 277, 192-200.
http://dx.doi.org/10.1016/j.apsusc.2013.04.024
[14] Dezfoolian, M., Rashchi, F. and Nekouei, R.K. (2015) Syn-thesis of Copper and Zinc Oxides Nanostructures by Brass Anodization in Alkaline Media. Surface and Coatings Technology, 275, 245-251.
http://dx.doi.org/10.1016/j.surfcoat.2015.05.011
[15] Hamilton, J.C., Farmer, J.C. and Anderson, R.J. (1986) In Situ Raman Spectroscopy of Anodic Films Formed on Copper and Silver in Sodium Hydroxide Solution. Journal of the Electrochemical Society, 4, 739-745.
http://dx.doi.org/10.1149/1.2108666
[16] Hagemann, H., Bill, H., Sadowski, W., Walker, E. and François, M. (1990) Raman Spectra of Single Crystal CuO. Solid State Communications, 6, 447-451.
http://dx.doi.org/10.1016/0038-1098(90)90048-G
[17] La, D.D., Park, S.Y., Choi, Y.W. and Kim, Y.S. (2010) Wire-Like Bundle Arrays of Copper Hydroxide Prepared by the Electrochemical Anodization of Cu Foil. Bulletin of the Korean Chemical Society, 8, 2283-2288.
http://dx.doi.org/10.5012/bkcs.2010.31.8.2283
[18] 刘恩科, 朱秉升, 罗晋生. 半导体物理学[M]. 第七版. 北京: 电子工业出版社, 2013: 52-77.
[19] Wu, H.W., Lee, S.Y., Lu, W.C. and Chang, K.S. (2015) Piezoresistive Effects Enhanced the Photocatalytic Properties of Cu2O/CuO Nanorods. Applied Surface Science, 344, 236-241.
http://dx.doi.org/10.1016/j.apsusc.2015.03.122