青蒿素生物合成分子调控研究进展
Advances in Molecular Regulation of Artemisinin Biosynthesis
DOI: 10.12677/BR.2016.53016, PDF, HTML, XML, 下载: 2,695  浏览: 8,781  国家科技经费支持
作者: 王路尧, 张颖, 唐克轩, 赵静雅*:上海交通大学农业与生物学院,复旦-交大-诺丁汉植物生物技术研发中心,上海;李杉:华南理工大学生物科学与工程学院,广东 广州
关键词: 青蒿青蒿素生物合成关键酶分子调控Artemisia annua L. Artemisinin Biosynthesis Key Enzymes Molecular Regulation
摘要: 青蒿素是一种含有过氧基团的倍半萜内酯化合物,是目前已知的世界上最有效的疟疾治疗药物。青蒿素的主要来源是青蒿,因此青蒿中青蒿素的生物合成调控已成为研究的热点。文章综述了青蒿素生物合成的途径,重点介绍青蒿素生物合成途径中的关键酶。此外,文章还介绍了近年来青蒿素生物合成分子调控方面的研究进展,主要集中于如何有效提升青蒿素含量的方法从而有助于青蒿素的稳定供应。
Abstract: Artemisinin, a sesquiterpene lactone compound with an endoperoxide bridge, is a new and the most potent antimalarial drug. Commercially available artemisinin is extracted from Artemisia annua L. plants. Therefore, the regulation of artemisinin biosynthesis in Artemisia annua has be-come a hot spot. This paper reviews the ways of artesunate biosynthesis, especially the key enzymes and gene regulation in the biosynthesis. The review also presents the advances in molecular regulation of artemisinin biosynthesis, it focuses on how to enhance the artemisinin content to help stabilize the supply of artemisinin.
文章引用:王路尧, 张颖, 唐克轩, 李杉, 赵静雅. 青蒿素生物合成分子调控研究进展[J]. 植物学研究, 2016, 5(3): 113-123. http://dx.doi.org/10.12677/BR.2016.53016

参考文献

[1] WHO (2012) World Malaria Report. http://www.who.int/malaria/publications/world_malariareport_2012/en/index.html
[2] Qinghaosu Coordinating Re-search Group (1977) A New Sesquiterpene Lactone-Qinghaosu. Chinese Science Bulletin, 3, 142.
[3] Graham, I.A., Besser, K., Blumer, S., et al. (2010) The Genetic Map of Artemisia annua L. Identifies Loci Affecting Yield of the An-timalarial Drug Artemisinin. Science, 327, 328-331.
http://dx.doi.org/10.1126/science.1182612
[4] Mutabingwa, T.K. (2005) Artemisinin-Based Combination Therapies (ACTS): Best Hope for Malaria Treatment but Inaccessible to the Needy. Acta Tropica, 95, 305-315.
http://dx.doi.org/10.1016/j.actatropica.2005.06.009
[5] Nguyen, K.T., Arsenault, P.R. and Weathers, P.J. (2011) Trichomes + Roots + ROS = Artemisinin: Regulating Artemisinin Biosyn-thesis in Artemisia annua L. In Vitro Cellular & Developmental Biology—Plant, 47, 329-338.
http://dx.doi.org/10.1007/s11627-011-9343-x
[6] Schramek, N., Wang, H., Römisch-Margl, W., et al. (2010) Artemisinin Biosynthesis in Growing Plants of Artemisia annua. A 13CO2 Study. Phytochemistry, 71, 179-187.
http://dx.doi.org/10.1016/j.phytochem.2009.10.015
[7] Olsson, M.E., Olofsson, L.M., Lindahl, A.-L., et al. (2009) Localization of Enzymes of Artemisinin Biosynthesis to the Apical Cells of Glandular Secretory Trichomes of Artemisia annua L. Phytochemistry, 70, 1123-1128.
http://dx.doi.org/10.1016/j.phytochem.2009.07.009
[8] Duke, M., Paul, R., Elsohly, H., et al. (1994) Localization of Artemisinin and Artemisitene in Foliar Tissues of Glanded and Glandless Biotypes of Artemisia annua L. In-ternational Journal of Plant Sciences, 155, 365-372.
http://dx.doi.org/10.1086/297173
[9] Mercke, P., Bengtsson, M., Bouwmeester, H.J., et al. (2000) Molecular Cloning, Expression, and Characterization of Amorpha-4,11-diene Synthase, a key Enzyme of Artemisinin Biosynthesis in Artemisia annua L. Archives of Biochemistry and Biophysics, 381, 173-180.
http://dx.doi.org/10.1006/abbi.2000.1962
[10] Wallaart, T.E., Bouwmeester, H.J., Hille, J., et al. (2001) Amor-pha-4,11-diene Synthase: Cloning and Functional Expression of a Key Enzyme in the Biosynthetic Pathway of the Novel Antimalarial Drug Artemisinin. Planta, 212, 460-465.
http://dx.doi.org/10.1007/s004250000428
[11] Kim, S.H., Chang, Y.J. and Kim, S.U. (2008) Tissue Specificity and Developmental Pattern of Amorpha-4,11-diene Synthase (ADS) Proved by ADS Promoter-Driven GUS Expression in the Heterologous Plant, Arabidopsis thaliana. Planta Medica, 74, 188-193.
http://dx.doi.org/10.1055/s-2008-1034276
[12] Wang, H.Z., Olofsson, L., Lundgren, A., et al. (2011) Trichome-Specific Expression of Amorpha-4,11-diene Synthase, a Key Enzyme of Artemisinin Biosynthesis in Artemisia annua L., as Reported by a Promoter-GUS Fusion. American Journal of Plant Sciences, 2, 619-628.
http://dx.doi.org/10.4236/ajps.2011.24073
[13] Teoh, K.H., Polichuk, D.R., Reed, D.W., et al. (2006) Artemisia annua L. (Asteraceae) Trichome-Specific cDNAs Reveal CYP71AV1, a Cytochrome P450 with a Key Role in the Biosynthesis of the Antimalarial Sesquiterpene Lactone Artemisinin. FEBS Letters, 580, 1411-1416.
http://dx.doi.org/10.1016/j.febslet.2006.01.065
[14] Zhang, Y., Teoh, K.H., Reed, D.W., et al. (2008) The Mole-cular Cloning of artemisinic Aldehyde Delta11(13) Reductase and Its Role in Glandular Trichome-Dependent Biosyn-thesis of Artemisinin in Artemisia annua. The Journal of Biological Chemistry, 283, 21501-21508.
http://dx.doi.org/10.1074/jbc.M803090200
[15] Teoh, K.H., Polichuk, D.R., Reed, D.W. and Covello, P.S. (2009) Molecular Cloning of an Aldehyde Dehydrogenase Implicated in Artemisinin Biosynthesis in Artemisia annua. Botany, 87, 635-642.
http://dx.doi.org/10.1139/B09-032
[16] Lommen, W.J.M., Elzinga, S., Verstappen, F.W.A. and Bouwmeester, H.J. (2007) Artemisinin and Sesquiterpene Precursors in Dead and Green Leaves of Artemisia annua L. Crops. Planta Medica, 73, 1133-1139.
http://dx.doi.org/10.1055/s-2007-981567
[17] Lommen, W.J.M., Schenk, E., Bouwmeester, H.J. and Verstappen, F.W.A. (2006) Trichome Dynamics and Artemisinin Accumulation during Development and Senescence of Artemisia annua Leaves. Planta Medica, 72, 336-345.
http://dx.doi.org/10.1055/s-2005-916202
[18] Brown, G.D. and Sy, L.-K. (2004) In Vivo Transformations of Di-hydroartemisinic Acid in Artemisia annua Plants. Tetrahedron, 60, 1139-1159.
http://dx.doi.org/10.1016/j.tet.2003.11.070
[19] Brown, G.D. and Sy, L.-K. (2007) In Vivo Transformations of Artemisinic Acid in Artemisia annua Plants. Tetrahedron, 63, 9548-9566.
http://dx.doi.org/10.1016/j.tet.2007.06.062
[20] Chappell, J., Wolf, F., Proulx, J., Cuellar, R. and Saunders, C. (1995) Is the Reaction Catalyzed by 3-Hydroxyl-3-Me- thylglutaryl Coenzyme A Reductase a Rate-Limiting Step for Isoprenoid Biosynthesis in Plants? Plant Physiology, 109, 1337-1343.
[21] Matsushita, Y., Kang, W.Y. and Charlwood, B.V. (1996) Cloning and Analysis of a cDNA Encoding Farnesyl Diphosphate Synthase from Artemisia annua. Gene, 172, 207-209.
http://dx.doi.org/10.1016/0378-1119(96)00054-6
[22] Ram, M., Khan, M.A., Jha, P., et al. (2010) HMG-CoA Reductase Limits Artemisinin Biosynthesis and Accumulation in Artemisia annua L. Plants. Acta Physiologiae Plantarum, 32, 859-866.
http://dx.doi.org/10.1007/s11738-010-0470-5
[23] Carretero-Paulet, L., Ahumada, I., Cunillera, N., et al. (2002) Expression and Molecular Analysis of the Arabidopsis DXR Gene Encoding 1-Deoxy-D-xylulose 5-Phosphate Reductoisomerase, the First Committed Enzyme of the 2-C- Methyl-D-erythritol 4-phosphate Pathway. Plant Physiology, 129, 1581-1591.
http://dx.doi.org/10.1104/pp.003798
[24] Xiang, L.E., Zeng, L.X., Yuan, Y., et al. (2012) Enhancement of Artemisinin Biosynthesis by Overexpressing dxr, cyp71av1 and cpr in the Plants of Artemisia annua L. Plant Omics Journal, 5, 503-507.
[25] Ashby, M.N. and Edwards, P.A. (1990) Elucidation of the Deficiency in Two Yeast Coenzyme Q Mutants. Characterization of the Structural Gene Encoding Hexaprenyl Pyrophosphate Synthetase. The Journal of Biological Chemistry, 265, 13157-13164.
[26] Chen, D.H., Ye, H.C. and Li, G.F. (2000) Expression of a Chimeric Farnesyl Diphosphate Synthase Gene in Artemisia annua L. Trans-genic Plants via Agrobacterium tumefaciens-Mediated Transformation. Plant Science, 155, 179-185.
http://dx.doi.org/10.1016/S0168-9452(00)00217-X
[27] Ro, D.K., Paradise, E.M., Ouellet, M., et al. (2006) Pro-duction of the Antimalarial Drug Precursor Artemisinic Acid in Engineered Yeast. Nature, 440, 940-943.
http://dx.doi.org/10.1038/nature04640
[28] Weathers, P.J., Cheetham, R.D., Follansbee, E. and Teoh, K. (1994) Artemisinin Production by Transformed Roots of Artemisia annua. Biotechnology Letters, 16, 1281-1286.
[29] Qin, M.-B., Li, G.-Z., Yun, Y., Ye, H.-C. and Li, G.-F. (1994) Induction of Hairy Root from Artemisia annua with Agro-bacterium rhizogenes and Its Culture in Vitro. Acta Botanica Sinica, 36, 165-170.
[30] Liu, B.Y., Ye, H.C., Li, G.F., et al. (1998) Studies on Dynamics of Growth and Biosynthesis of Artemisinin in Hairy Roots of Artemisia annua L. Chinese Journal of Biotechnology, 14, 401-404.
[31] Chen, D.H., Meng, Y.L., Ye, H.C., Li, G.-F. and Chen, X.-Y. (1998) Culture of Transgenic Artemisia annua Hairy Root with Cotton Cadinene Synthase Gene. Acta Botanica Sinica, 40, 711-714.
[32] Vergauwe, A., Cammaert, R., Vandenberghe, D., et al. (1996) Agrobacterium Tumefaciens-Mediated Transformation of Artemisia annua L. and Regeneration of Transgenic Plants. Plant Cell Reports, 15, 929-933.
http://dx.doi.org/10.1007/BF00231590
[33] Vergauwe, A., Van Geldre, E., Inzé, D., Van Montagu, M. and Van den Eeckhout, E. (1998) Factors Influencing Agrobacterium tumefaciens-Mediated Transformation of Artemisia annua L. Plant Cell Reports, 18, 105-110.
http://dx.doi.org/10.1007/s002990050540
[34] Chen, D.H., Liu, C.J., Ye, H.C., et al. (1999) Ri-Mediated Trans-formation of Artemisia annua with a Recombinant Farnesyl Diphosphate Synthase Gene for Artemisinin Production. Plant Cell, Tissue and Organ Culture, 57, 157-162.
http://dx.doi.org/10.1023/A:1006326818509
[35] Aquil, S., Husaini, A.M., Abdin, M.Z. and Rather, G.M. (2009) Overexpression of the HMG-CoA Reductase Gene Leads to Enhanced Artemisinin Biosynthesis in Transgenic Artemisia annua Plants. Planta Medica, 75, 1453-1458.
http://dx.doi.org/10.1055/s-0029-1185775
[36] Nafis, T., Akmal, M., Ram, M., et al. (2011) Enhancement of Ar-temisinin Content by Constitutive Expression of the HMG-CoA Reductase Gene in High-Yielding Strain of Artemisia annua L. Plant Biotechnology Reports, 5, 53-60.
http://dx.doi.org/10.1007/s11816-010-0156-x
[37] Paddon, C.J., Westfall, P.J., Pitera, D.J., et al. (2013) High-Level Semi-Synthetic Production of the Potent Antimalarial Artemisinin. Nature, 496, 528-532.
http://dx.doi.org/10.1038/nature12051
[38] Banyai, W., Kirdmanee, C., Mii, M. and Su-paibulwatana, K. (2010) Overexpression of Farnesyl Pyrophosphate Synthase (FPS) Gene Affected Artemisinin Content and Growth of Artemisia annua L. Plant Cell, Tissue and Organ Culture, 103, 255-265.
http://dx.doi.org/10.1007/s11240-010-9775-8
[39] Han, J.L., Liu, B.Y., Ye, H.C., Wang, H., Li, Z.-Q. and Li, G.-F. (2006) Effects of Overexpression of the Endogenous Farnesyl Diphosphate Synthase on the Artemisinin Content in Artemisia annua L. Journal of Integrative Plant Biology, 48, 482-487.
http://dx.doi.org/10.1111/j.1744-7909.2006.00208.x
[40] Ma, C., Wang, H., Lu, X., Wang, H., Xu, G. and Liu, B. (2009) Terpenoid Metabolic Profiling Analysis of Transgenic Artemisia annua L. by Comprehensive Two-Dimensional Gas Chromatography Time-of-Flight Mass Spectrometry. Metabolomics, 5, 497-506.
http://dx.doi.org/10.1007/s11306-009-0170-6
[41] Alam, P. and Abdin, M.Z. (2011) Over-Expression of HMG-CoA Reductase and Amorpha-4,11-Diene Synthase Genes in Artemisia annua L. and Its Influence on Artemisinin Content. Plant Cell Reports, 30, 1919-1928.
http://dx.doi.org/10.1007/s00299-011-1099-6
[42] Wang, Y.Y., Jing, F.Y., Yu, S.Y., et al. (2011) Co-Overexpression of the HMGR and FPS Genes Enhances Artemisinin Content in Artemisia annua L. Journal of Medicinal Plants Research, 5, 3396-3403.
[43] Jing, F.Y., Zhang, L., Li, M.X. and Tang, K.X. (2008) Overexpressing cyp71av1 and cpr Genes Enhances Artemisinin Content in Artemisia annua L. Journal of Agricultural Science and Technology, 103, 64-70.
[44] Chen, Y., Shen, Q., Wang, Y., et al. (2012) The Stacked Over-Expression of FPS, CYP71AV1 and CPR Genes Leads to the Increase of Artemisinin Level in Artemisia annua L. Plant Biotechnology Reports, 7, 287-295.
http://dx.doi.org/10.1007/s11816-012-0262-z
[45] Lu, X., Shen, Q., Zhang, L., et al. (2013) Promotion of Arte-misinin Biosynthesis in Transgenic Artemisia annua by Overexpressing ADS, CYP71AV1 and CPR Genes. Industrial Crops and Products, 49, 380-385.
http://dx.doi.org/10.1016/j.indcrop.2013.04.045
[46] Liu, Y., Ye, H.C., Wang, H. and Li, G.F. (2003) Molecular Cloning, Escherichia coli Expression and Genomic Organization of Squalene Synthase Gene from Artemisia annua. Acta Botanica Sinica, 45, 608-613.
[47] Zhang, L., Jing, F.Y., Li, F.P., et al. (2009) Development of Transgenic Artemisia annua (Chinese Wormwood) Plants with an Enhanced Content of Artemisinin, an Effective Anti-Malarial Drug, by Hairpin-RNA-Mediated Gene Silencing. Biotechnology and Applied Biochemistry, 52, 199-207.
http://dx.doi.org/10.1042/BA20080068
[48] Cai, Y., Jia, J.W., Crock, J., Lin, Z.-X., Chen, X.-Y. and Croteau, R. (2002) A cDNA Clone for β-Caryophyllene Synthase from Artemisia annua. Phytochemistry, 61, 523-529.
http://dx.doi.org/10.1016/S0031-9422(02)00265-0
[49] Chen, J.L., Fang, H.M., Ji, Y.P., et al. (2011) Artemisinin Biosynthesis Enhancement in Transgenic Artemisia annua Plants by Downregulation of the β-Caryophyllene Synthase Gene. Planta Medica, 77, 1759-1765.
http://dx.doi.org/10.1055/s-0030-1271038
[50] Putalun, W., Luealon, W., De-Eknamkul, W., Tanaka, H. and Shoyama, Y. (2007) Improvement of Artemisinin Production by Chitosan in Hairy Root Cultures of Artemisia annua L. Biotechnology Letters, 29, 1143-1146.
http://dx.doi.org/10.1007/s10529-007-9368-8
[51] Pu, G.-B., Ma, D.-M., Chen, J.-L., et al. (2009) Salicylic Acid Activates Artemisinin Biosynthesis in Artemisia annua L. Plant Cell Reports, 28, 1127-1135.
http://dx.doi.org/10.1007/s00299-009-0713-3
[52] Wang, H., Ma, C., Li, Z., et al. (2010) Effects of Exogenous Methyl Jasmonate on Artemisinin Biosynthesis and Secondary Metabolites in Artemisia annua L. Industrial Crops and Products, 31, 214-218.
http://dx.doi.org/10.1016/j.indcrop.2009.10.008
[53] Caretto, S., Quarta, A., Durante, M., et al. (2010) Methyl Jasmonate and Miconazole Differently Affect Arteminisin Production and Gene Expression in Artemisia annua Sus-pension Cultures. Plant Biology, 13, 51-58.
http://dx.doi.org/10.1111/j.1438-8677.2009.00306.x
[54] Verpoorte, R. and Memelink, J. (2002) Engineering Secondary Metabolite Production in Plants. Current Opinion in Biotechnology, 13, 181-187.
http://dx.doi.org/10.1016/S0958-1669(02)00308-7
[55] Van der Fits, L. and Memelink, J. (2000) ORCA3, a Jasmonate-Responsive Transcriptional Regulator of Plant Primary and Secondary Metabolism. Science, 289, 295-297.
http://dx.doi.org/10.1126/science.289.5477.295
[56] Van der Fits, L. and Memelink, J. (2001) The Jasmo-nate-Inducible AP2/ERF-Domain Transcription Factor ORCA3 Activates Gene Expression via Interaction with a Jas-monate-Responsive Promoter Element. The Plant Journal, 25, 43- 53.
[57] Pan, Q.F., Wang, Q., Yuan, F., et al. (2012) Overexpression of ORCA3 and G10H in Catharanthus roseus Plants Regulated Alkaloid Biosynthesis and Metabolism Revealed by NMR-Metabolomics. PLoS ONE, 7, e43038.
http://dx.doi.org/10.1371/journal.pone.0043038
[58] Ma, D.M., Pu, G.B., Lei, C.Y., et al. (2009) Isolation and Characterization of AaWRKY1, an Artemisia annua Transcription Factor that Regulates the Amorpha-4,11-diene Synthase Gene, a Key Gene of Artemisinin Biosynthesis. Plant and Cell Physiology, 50, 2146-2161.
http://dx.doi.org/10.1093/pcp/pcp149
[59] Tang, K.X., Chen, Y.F., Shen, Q., et al. (2012) Overexpression ALDH1 Gene Increased Artemisinin Content in Artemisia annua L. Patent CN201210014242.7.
[60] Lu, X., Zhang, L., Zhang, F., et al. (2013) AaORA, a Trichome-Specific AP2/ERF Transcription Factor of Artemisia annua, Is a Positive Regulator in the Artemisinin Biosynthetic Pathway and in Disease Resistance to Botrytis cinerea. New Phytologist, 198, 1191-1202.
http://dx.doi.org/10.1111/nph.12207
[61] Ji, Y.P., Xiao, J.W., Shen, Y.L., et al. (2014) Cloning and Characterization of AabHLH1, a bHLH Transcription Factor That Positively Regulates Artemisinin Biosynthesis in Artemisia annua. Plant and Cell Physiology, 55, 1592-1604.
http://dx.doi.org/10.1093/pcp/pcu090
[62] Kazan, K. and Manners, J.M. (2013) MYC2: The Master in Action. Molecular Plant, 6, 686-703.
http://dx.doi.org/10.1093/mp/sss128
[63] Shen, Q., Lu, X., Yan, T.X., et al. (2016) The Jasmonate-Responsive AaMYC2 Transcription Factor Positively Regulates Artemisinin Biosynthesis in Artemisia annua. New Phytologist, 210, 1269-1281.
http://dx.doi.org/10.1111/nph.13874
[64] Olofsson, L., Engstrom, A., Lundgren, A. and Brodelius, P.E. (2011) Relative Expression of Genes of Terpene Metabolism in Different Tissues of Artemisia annua L. BMC Plant Biology, 11, 45.
http://dx.doi.org/10.1186/1471-2229-11-45
[65] Olofsson, L., Lundgren, A. and Brodelius, P.E. (2012) Trichome Isolation with and without Fixation Using Laser Microdissection and Pressure Catapulting Followed by RNA Amplifi-cation: Expression of Genes of Terpene Metabolism in Apical and Sub-Apical Trichome Cells of Artemisia annua L. Plant Science, 183, 9-13.
http://dx.doi.org/10.1016/j.plantsci.2011.10.019
[66] Yu, Z.-X., Li, J.-X., Yang, C.-Q., Hu, W.-L., Wang, L.-J. and Chen, X.-Y. (2012) The Jasmonate-Responsive AP2/ERF Transcription Factors AaERF1 and AaERF2 Positively Regulate Artemisinin Biosynthesis in Artemisia annua L. Molecular Plant, 5, 353-365.
http://dx.doi.org/10.1093/mp/ssr087
[67] Jiang, W., Lu, X., Qiu, B., et al. (2013) Molecular Cloning and Charac-terization of a Trichome-Specific Promoter of Artemisinic Aldehyde Δ11(13) Reductase (DBR2) in Artemisia annua. Plant Molecular Biology Reporter, 32, 82-91.
http://dx.doi.org/10.1007/s11105-013-0603-2