多目标水火协调长期优化调度模型研究
Study on Long-Term Scheduling Model of Multi-Objective Hydrothermal System
DOI: 10.12677/JWRR.2016.53030, PDF, HTML, XML, 下载: 2,021  浏览: 4,094  科研立项经费支持
作者: 高力奇, 刘本希, 罗 彬, 程春田:大连理工大学水电与水信息研究所,辽宁 大连;杨浚文:云南电力调度控制中心,云南 昆明
关键词: 水火协调梯级水电站优化调度最优潮流长期调度Hydrothermal System Scheduling of Cascade Hydropower Stations Optimal Power Flow Long-Term Scheduling
摘要: 针对水火电力系统长期优化调度问题,将电网最优潮流和水火电站长期优化调度相结合,提出了考虑水电发电量最大、水电弃水量最少、火电煤耗最低以及全网网损最小的多目标水火电联合优化调度模型。该模型考虑了水电站水位约束、水电站流量约束、水量平衡约束、水火电源出力约束、潮流计算功率平衡约束以及电网安全约束,采用线性加权方法将多目标转化为单目标。以每月典型日负荷曲线为基础,将水电逐次切负荷与火电等微增率分配机组出力相结合,计算水火电出力分配、电网潮流及网损,最后采用遗传算法进行求解。通过IEEE-30节点系统模拟调度表明,本文所提方法能够有效减少水电弃水并显著降低系统总损耗,提高了电力系统的经济性,是一种可行的水火电长期联合优化调度方法。
Abstract: Focus on the problem of long-term generation scheduling of hydrothermal system, this paper combines OPF and long-term optimal scheduling hydrothermal system that proposes the multi-objective model of generation maximization of hydropower, spillage minimization of hydropower, consumption minimization of coal-fired thermal power and line loss minimization. The model takes into account the hydraulic constraints, water balance constraints, security constraints in the power grid, power balance constraints and power supply. The multi-objective is transformed into a single objective by using the linear weighted sum method. On the basis of the typical daily load curve, hydrothermal power output distribution and the power flow and network loss are calculated with hydropower successive cutting load and thermal power equal incremental rate. Finally, the genetic algorithm is used to solve this problem. IEEE-30 bus system is used to verify the effectiveness of the proposed method. The numerical results show that the generation scheduling obtained from the proposed method can reduce the total loss of the power grid; it’s a feasible long-term optimal dispatching method.
文章引用:高力奇, 刘本希, 罗彬, 程春田, 杨浚文. 多目标水火协调长期优化调度模型研究[J]. 水资源研究, 2016, 5(3): 237-245. http://dx.doi.org/10.12677/JWRR.2016.53030

参考文献

[1] 程春田, 郜晓亚, 武新宇, 等. 梯级水电站长期优化调度的细粒度并行离散微分动态规划方法[J]. 中国电机工程学报, 2011, 31(10): 26-32. CHENG Chuntian, GAO Xiaoya, WU Xinyu, et al. Fine-grained parallel discrete differentiation and dynamic programming algorithm for long-term optimization of cascade hydropower system. Proceedings of the CSEE, 2011, 31(10): 26-32. (in Chi-nese)
[2] 周建中, 李英海, 肖舸, 等. 基于混合粒子群算法的梯级水电站多目标优化调度[J]. 水利学报, 2010, 41(10): 1212-1219. ZHOU Jianzhong, LI Yinghai, XIAO Ge, et al. Multi-objective optimal dispatch of cascade hydropower stations based on shuffled particle swarm operation algorithm. Shuili Xuebao, 2010, 41(10): 1212-1219. (in Chinese)
[3] 刘娜, 李昱, 丁伟, 等. 跨流域水库群联合调度规则研究[J]. 水资源研究, 2015(4): 216-227. LIU Na, LI Yu, DING Wei, et al. Reservoir operating in multi-reservoir for water transfer system. Journal of Water Resources Research, 2015(4): 216-227. (in Chinese)
[4] 陈雪青, 陈刚, 相年德, 等. 大型水火电力系统经济调度的分解协调算法[J]. 清华大学学报, 1987, 27(1): 97-107. CHEN Xueqing, CHEN Gang, XIANG Niande, et al. Decomposition and coordination method for optimal scheduling of large hydro-thermal power systems. Journal of Tsinghua University, 1987, 27(1): 97-107. (in Chinese)
[5] GIL, E., BUSTOS, J. and RUDNICK, H. Short-term hydrothermal generation Scheduling model using a genetic algorithm. IEEE Transactions on Power Systems, 2003, 18(4): 1256-1264.
http://dx.doi.org/10.1109/TPWRS.2003.819877
[6] 袁晓辉, 袁艳斌, 张勇传. 用改进遗传算法求解水火电力系统的有功负荷分配[J]. 电力系统自动化, 2002, 26(23): 33-36. YUAN Xiaohui, YUAN Yanbin, ZHANG Yongchuan. Active power dispatch of hydrothermal power system using refined ge-netic algorithms. Automation of Electric Power Systems, 2002, 26(23): 33-36.(in Chinese)
[7] LU, Y. L., ZHOU, J. Z., QIN, H., et al. An adaptive chaotic differential evolution for the short-term hydrothermal generation scheduling problem. Energy Conversion and Management, 2010, 51(7): 1481-1490.
http://dx.doi.org/10.1016/j.enconman.2010.02.006
[8] 薛美娟, 杨晓萍, 马啸远. 基于最优潮流理论的风电、梯级水电短期联合优化调度[J]. 水利学报, 2014, 45(3): 368-375. XUE Meijuan, YANG Xiaoping, MA Xiaoyuan. The united optimal operation of wind power and cascaded hydropower based on the optimal power flow theory. Shuili Xuebao, 2014, 45(3): 368-375. (in Chinese)
[9] 马瑞, 贺仁睦, 颜宏文, 等. 考虑水火协调的多目标优化分组分段竞标模型[J]. 电机工程学报, 2004, 24(11): 53-57. MA Rui, HE Renmu, YAN Hongwen, et al. A novel multi-objective optimal group and block bidding model for hydrothermal powermarket. Proceedings of the CSEE, 2004, 24(11): 53-57. (in Chinese)
[10] 韦化, 梁振成, 阳育德, 等. 节能调度中的水火电力最优协调问题[J]. 电力自动化设备, 2010, 30(4): 1-4. WEI Hua, LIANG Zhencheng, YANG Yude, et al. Optimal coordination between hydraulic and thermal powers in energy- saving dispatch. Electric Power Automation Equipment, 2010, 30(4): 1-4. (in Chinese)
[11] 武新宇, 程春田,李刚, 等. 水电站群长期典型日调峰电量最大模型研究[J]. 水利学报, 2012, 43(3): 363-371. WU Xinyu, CHENG Chuntian, LI Gang, et al. Research on long term typical day peak load regulation energy maximization model for hydropower systems. Shuili Xuebao, 2012, 43(3): 363-371. (in Chinese)
[12] 廖胜利, 程春田, 蔡华祥, 等. 改进的火电调峰方式[J]. 电力系统自动化, 2006, 30(1): 89-93. LIAO Shengli, CHENG Chuntian, CAI Huaxiang, et al. Improved algorithm of adjusting discharge peak by thermal power plants. Automation of Electric Power Systems, 2006, 30(1): 89-93. (in Chinese)
[13] 李刚, 程春田, 曾筠, 等. 改进等微增率算法求解火电负荷分配问题的实用化研究与应用[J]. 电力系统保护与控制, 2012, 40(2): 72-76. LI Gang, CHENG Chuntian, ZENG Yun, et al. Practical study and application of thermal load distribution solved by improved equal incremental principle. Power System Protection and Control, 2012, 40(2): 72-76. (in Chinese)