气层厚度对井底压力的影响分析
Analyzing the Effect of Gas Layer Thickness on Bottom Hole Pressure
DOI: 10.12677/JOGT.2016.382016, PDF, HTML, XML, 下载: 1,760  浏览: 4,708  国家自然科学基金支持
作者: 陶瑞东, 李贵宾, 柳耀泉, 许京国:中石油渤海钻探工程有限公司第三钻井工程公司,天津 ;朱 亮:长江大学石油工程学院,湖北 武汉
关键词: 井底压力气层厚度井控稳定值Bottom Hole Pressure Drilling Thickness of Gas Formation Well Control Stable Value
摘要: 在气井的钻井过程中,井底压力的变化对井控风险的影响是很大的。但目前在分析影响气层井筒井底压力变化的因素时,未考虑气层厚度对井底压力的影响。基于质量守恒和动量守恒定理,针对井筒气侵后的实际情况,首先建立了气侵后井底压力的计算模型,然后联合分相流方程,运用有限差分的方法,以工程实例数据为基础,讨论了打开气层厚度对井底压力的影响规律。分析结果表明,随着钻遇气层厚度的增大,井底压力稳定值较大,井底压差也愈大,最终导致井控难度加大,建议采用合理的手段尽早侦测气侵情况,采取措施能够减少地层气体的侵入量,达到安全井控的目的。该研究是对气侵、井底压力变化规律认识的完善,对现场实际井控安全操作策略的制定具有重要指导意义。
Abstract: In the process of drilling of gas wells, the change of bottom hole pressure has great influence on well control. However, the influence of gas layer thickness on the bottom hole pressure was not considered currently in analyzing the factors influencing the changes of bottom hole pressure. Based on mass conservation and principle of conservation of momentum, the mathematical model of bottom pressure after invading was established. And then based on the engineering case, com-bined with the phase separation equations, the finite difference method is used to discuss the in-fluential rules of gas layer thickness on the bottom hole pressure. The result shows that the bottom hole differential pressure and the stable value of B.H.P. increases while the thickness of drilling gas formation is large, which can increase the difficulty of well control. The suggestion is that rational measurement is used for early control of gas invasion to reduce the gas invasion and safe well control. The study is the completion to the understanding of gas invasion and regulation of the changes of bottom hole pressure, it provides guidance for setting up the strategy of well control.
文章引用:陶瑞东, 朱亮, 李贵宾, 柳耀泉, 许京国. 气层厚度对井底压力的影响分析[J]. 石油天然气学报, 2016, 38(2): 59-65. http://dx.doi.org/10.12677/JOGT.2016.382016

参考文献

[1] Ansari, A.M., Sylveste, N.D., Shoham, O., et al. (1990) A Comprehensive Mechanistic Model for Upward Two-Phase Flow in Wellbores. SPE Production & Facilities, 9, SPE-20630-PA.
[2] Hasan, A.R. and Kablr, C.S. (1988) Predicting Multiphase Flow Behavior in a Deviated Well. SPE Production Engineering, 3, SPE-15449-PA.
[3] Lage, C.V.M., Rommetveit, R. and Time, R.W. (2000) An Experimental and Theoretical Study of Two-Phase Flow in Horizontal or Slightly Deviated Fully Eccentric Annuli. IADC/SPE Asia Pacific Drilling Technology, Kuala Lumpur, 11-13 September 2000, SPE-62793-MS.
[4] Nickens, H.V. (1987) A Dynamic Computer Model of a Kicking Well. SPE Drilling Engineering, 2, 159-173.
http://dx.doi.org/10.2118/14183-PA
[5] Santos, O.L.A. (1991) Well-Control Operations in Horizontal Wells. SPE Drilling Engineering, 6, SPE-21105-PA.
[6] Choe, J. (2001) Advanced Two-Phase Well Control Analysis. Journal of Canadian Petroleum Technology, 40, 39-47.
http://dx.doi.org/10.2118/01-05-02
[7] 李相方, 庄湘琦, 隋秀香, 等. 气侵期间环空气液两相流动研究[J]. 工程热物理学报, 2004, 25(1): 73-76.
[8] 周照明. 欠平衡随钻气侵规律及运移模型研究[D]: [博士学位论文]. 大庆: 大庆石油学院, 2010.
[9] 谢明英. 作业井井侵期间气液流动规律研究[D]: [硕士学位论文]. 山东: 中国石油大学(华东), 2007.
[10] 王凯. 水平井井筒压力计算研究[D]: [硕士学位论文]. 北京: 中国石油大学, 2008.
[11] 范军, 施太和. 气井动态井控模型及计算机仿真[J]. 天然气工业, 1998, 18(4): 71-74.
[12] 徐朝阳, 孟英峰, 魏纳, 等. 气侵过程井筒压力演变规律实验和模型[J]. 石油学报, 2015, 36(1): 120-126.
[13] 王志远, 孙宝江, 程海清. 深水井控过程中天然气水合物生成区域预测[J]. 应用力学学报, 2009, 26(2): 224-229.
[14] 王利田. 大牛地气田低孔低渗气藏储层评价及含气性预测[D]: [博士学位论文]. 北京: 中国地质大学(北京), 2009.
[15] 杜新江, 任春玲. 利用“同相轴下拉”地震反射特征预测苏里格气田气层[J]. 石油天然气学报(江汉石油学院学报), 2008, 30(2): 466-467, 655.
[16] 张光荣, 卢晓敏, 孔令霞, 等. 川中潼南地区须二气藏多参数储层预测[J]. 石油钻采工艺, 2010, 32(S1): 12-15.