GDNF对视神经轴突切断后大鼠视网膜EAAT-1和GS表达的影响
The Effect of GDNF on the Expression of Retinal EAAT-1 and GS of Rats after Optic Nerve Axotomy
DOI: 10.12677/HJO.2016.52007, PDF, HTML, XML,  被引量 下载: 1,944  浏览: 5,195  科研立项经费支持
作者: 黄正如, 陈海英, 项晓丽:常熟市第二人民医院眼科,江苏 常熟;管怀进:南通大学附属医院眼科,江苏 南通
关键词: 视神经损伤胶质细胞源性神经营养因子兴奋性氨基酸转运蛋白-1谷氨酰胺合酶Optic Nerve Crush Glial Cell Derived Neurotrophic Factor Excitatory Amino Acid Transporter-1 Glutamine Synthetase
摘要: 目的:研究玻璃体腔注射外源性胶质细胞源神经营养因子(Glial cell derived neurotrophic factor, GDNF)对视神经轴突切断(optic nerve axotomy, ONA)大鼠视网膜兴奋性氨基酸转运蛋白-1(Excitatory Amino Acid Transporter-1, EAAT-1)和谷氨酰胺合酶(Glutamine synthetase, GS)表达影响。方法:建立Sprague-Dawley (SD)大鼠单眼视神经轴突切断模型56只,并随机分为4组,各组16只SD大鼠。伤后即刻、7 d玻璃体腔内分别注射GDNF(Glial cell derived neurotrophic factor) 1 µg (实验组1)、2 µg (实验组2)、3 µg (实验组3)和0.1 M磷酸缓冲液(阴性对照组),阴性对照组大鼠的对侧眼作为正常对照组。各组于术后7 d随机选择2只大鼠上丘脑逆行标记荧光金视神经轴突切断状况。术后14 d、21 d随机选择6只实验大鼠,免疫组织化学分析视网膜EAAT-1和GS的表达。结果:视网膜神经节细胞逆行标记显示视神经夹伤后视神经轴突被完全切断。ONA后14 d、21 d,正常对照组、实验组2的EAAT-1、GS表达均高于阴性对照组;ONA后14 d,实验组3的GS表达高于阴性对照组。ONA后21 d,实验组1的EAAT-1、GS表达低于正常对照组。结论:玻璃体腔注射适当剂量的外源性GDNF能促进视神经损伤后大鼠视网膜EAAT-1、GS的表达。
Abstract: Objective: To investigate the effect of exogenous Glial cell derived neurotrophic factor (GDNF) on the expression of retinal excitatory amino acid transporter-1 (EAAT-1) and glutamine synthetase (GS) of rats after optic nerve axotomy. Methods: Right unilateral optic nerve crush (ONA) model of Sprague-Dawley rats (56) was established, and divided into 4 groups randomly. Right eyes of each group were injected intravitreously 1 µg (test 1 group), 2 µg (test 2 group ), 3 µg ( test 3 group) GDNF, and 0.1 M phosphate buffered saline (negative control group) after ONA immediately. Injec-tions were repeated 7 days after ONA. The left eyes of negative control group were intact, and served as normal control group. FluoroGold was injected into the superior colliculi of 2 rats out of each group to retrogradely label retinal ganglion cells in order to examine the optic nerve axotomy. The expression of GS, EAAT-1 of each group was tested with immnohistochemisty 14 and 21 days after ONA. Results: Retinal ganglion cells axotomy were confirmed by FluoroGold retrogradely labeling. The expression of EAAT-1, GS of normal control group and test 2 group was high significantly than that of negative control group at 14, 21 days after ONA. The expression of GS of test 3 group was also high significantly than that of negative control group at 14 days after ONA. The expression of EAAT-1, GS of test 1 group was lower than that of normal control group at 21 days after ONA. Conclusion: Exogenous GDNF injected intravitreously with adequate dose can enhance the expression of EAAT-1, GS after optic nerve axotomy.
文章引用:黄正如, 陈海英, 项晓丽, 管怀进. GDNF对视神经轴突切断后大鼠视网膜EAAT-1和GS表达的影响[J]. 眼科学, 2016, 5(2): 37-44. http://dx.doi.org/10.12677/HJO.2016.52007

参考文献

[1] Park, K.K., Liu, K., Hu, Y., et al. (2008) Promoting Axon Regeneration in the Adult CNS by Modulation of the PTEN/mTOR Pathway. Science, 322, 963-966.
http://dx.doi.org/10.1126/science.1161566
[2] Tan, H.B., Shen, X., Cheng, Y., et al. (2012) Evaluation of a Partial Optic Nerve Crush Model in Rats. Experimental and Therapeutic Medicine, 4, 401-404.
[3] 陈海英, 黄正如, 叶凯. 视神经损伤对大鼠视网膜兴奋性氨基酸转运蛋白-1表达的影响[J]. 眼科研究, 2009, 27(10): 884-887.
[4] 黄正如, 陈海英, 徐明, 等. 视神经挫伤对大鼠视网膜谷氨酰胺合酶和兴奋性氨基酸转运蛋白-2表达的影响[J]. 眼科新进展, 2008, 28(9): 657-660.
[5] Martin, K.R., Levkovitch-Verbin, H., Valenta, D., et al. (2002) Retinal Glutamate Transporter Changes in Experimental Glaucoma and after Optic Nerve Transection in the Rat. Investigative Ophthalmology & Visual Science, 43, 2236- 2243.
[6] Ola, M.S., Hosoya, K. and LaNoue, K.F. (2011) Regulation of Glutamate Metabolism by Hydrocortisone and Branched Chain Keto Acids in Cultured Rat Retinal Muller Cells (TR-MUL). Neurochemistry International, 59, 656- 663.
http://dx.doi.org/10.1016/j.neuint.2011.06.010
[7] Ola, M.S., Hosoya, K. and LaNoue, K.F. (2011) Influence of Insulin on Glutamine Synthetase in the Muller Glial Cells of Retina. Metabolic Brain Disease, 26, 195-202.
http://dx.doi.org/10.1007/s11011-011-9245-y
[8] Ward, M.S., Khoobehi, A., Lavik, E.B., et al. (2007) Neuroprotection of Retinal Ganglion Cells in DBA/2J Mice with GDNF-Loaded Biodegradable Microspheres. Journal of Pharmaceutical Sciences, 96, 558-568.
http://dx.doi.org/10.1002/jps.20629
[9] Koeberle, P.D. and Ball, A.K. (2002) Neurturin Enhances the Survival of Axotomized Retinal Ganglion Cells in Vivo: Combined Effects with Glial Cell Line-Derived Neurotrophic Factor and Brain-Derived Neurotrophic Factor. Neuroscience, 110, 555-567.
http://dx.doi.org/10.1016/S0306-4522(01)00557-7
[10] Feng, D.F., Chen, E.T., Li, X.Y., et al. (2010) Standardizing Optic Nerve Crushes with an Aneurysm Clip. Neurological Research, 32, 476-481.
http://dx.doi.org/10.1179/016164110X12556180206158
[11] Ishikawa, M. (2013) Abnormalities in Glutamate Metabolism and Excitotoxicity in the Retinal Diseases. Scientifica (Cairo), 2013, 528940.
http://dx.doi.org/10.1155/2013/528940
[12] Schuettauf, F., Naskar, R., Vorwerk, C.K., et al. (2000) Ganglion Cell Loss after Optic Nerve Crush Mediated through AMPA-Kainate and NMDA Receptors. Investigative Ophthalmology & Visual Science, 41, 4313-4316.
[13] Vorwerk, C.K., Kreutz, M.R., Bockers, T.M., et al. (1999) Susceptibility of Retinal Ganglion Cells to Excitotoxicity Depends on Soma Size and Retinal Eccentricity. Current Eye Research, 19, 59-65.
http://dx.doi.org/10.1076/ceyr.19.1.59.5336
[14] Bringmann, A., Grosche, A., Pannicke, T., et al. (2013) GABA and Glutamate Uptake and Metabolism in Retinal Glial (Muller) Cells. Frontiers in Endocrinology (Lausanne), 4, 48.
http://dx.doi.org/10.3389/fendo.2013.00048
[15] Siliprandi, R., Canella, R., Carmignoto, G., et al. (1992) N-Methyl-D-Aspartate-Induced Neurotoxicity in the Adult Rat Retina. Visual Neuroscience, 8, 567-573.
http://dx.doi.org/10.1017/S0952523800005666
[16] Barnett, N.L., Pow, D.V. and Bull, N.D. (2001) Differential Perturbation of Neuronal and Glial Glutamate Transport Systems in Retinal Ischaemia. Neurochemistry International, 39, 291-299.
http://dx.doi.org/10.1016/S0197-0186(01)00033-X
[17] Holcombe, D.J., Lengefeld, N., Gole, G.A., et al. (2008) The Effects of Acute Intraocular Pressure Elevation on Rat Retinal Glutamate Transport. Acta Ophthalmologica, 86, 408-414.
http://dx.doi.org/10.1111/j.1600-0420.2007.01052.x
[18] Delyfer, M.N., Simonutti, M., Neveux, N., et al. (2005) Does GDNF Exert Its Neuroprotective Effects on Photoreceptors in the rd1 Retina through the Glial Glutamate Transporter GLAST? Molecular Vision, 11, 677-687.
[19] Shaked, I., Ben-Dror, I. and Vardimon, L. (2002) Glutamine Synthetase Enhances the Clearance of Extra-cellular Glutamate by the Neural Retina. Journal of Neurochemistry, 83, 574-580.
http://dx.doi.org/10.1046/j.1471-4159.2002.01168.x
[20] 罗学港, 熊黄, 潘童, 等. 急性眼高压大鼠视网膜谷氨酸/天冬氨酸转运体和谷氨酰胺合成酶的表达[J]. 解剖学杂志, 2005, 28(3): 308-310.
[21] Luz, M., Mohr, E. and Fibiger, H.C. (2015) GDNF-Induced Cerebelllar Toxicity: A Brief Review l. Neurotoxicology, 11, 1.
http://dx.doi.org/10.1016/j.neuro.2015.10.011
[22] Jiang, C., Moore, M.J., Zhang, X., Klassen, H., Langer, R. and Young, M. (2007) Intravitreal Injections of GDNF- Loaded Biodegradable Microspheres Are Neuroprotective in a Rat Model of Glaucoma. Molecular Vision, 13, 1783- 1792.
[23] Gao, K., Wang, G., Wang, Y., et al. (2015) Neuroprotective Effect of Simvastatin via Inducing the Autophagy on Spinal Cord Injury in the Rat Model. BioMed Research International, 2015, 260161.
http://dx.doi.org/10.1155/2015/260161
[24] Cui, W., Zhang, Y., Lu, D., et al. (2015) Upregulation of pAkt by Glial Cell Linederived Neurotrophic Factor Ameliorates Cell Apoptosis in the Hippocampus of Rats with Streptozotocin-Induced Diabetic En-cephalopathy. Molecular Medicine Reports, 11, 5.
http://dx.doi.org/10.3892/mmr.2015.4507
[25] Morgan-Warren, P.J., Berry, M., Ahmed, Z., et al. (2013) Exploiting mTOR Signaling: A Novel Translatable Treatment Strategy for Traumatic Optic Neuropathy? Investigative Ophthalmology & Visual Science, 54, 6903-6916.
http://dx.doi.org/10.1167/iovs.13-12803