以向日葵8号观测侦测过冲云的方法与实验
Methods and Experiments of Detecting Overshooting Top by Using Himawari-8 Imagery
DOI: 10.12677/AG.2016.63022, PDF, HTML, XML,  被引量 下载: 2,232  浏览: 4,341 
作者: 周鉴本:“中央气象局”气象卫星中心,台湾 台北
关键词: 过冲云水汽频道红外窗区频道Overshooting Top Water Vapor Channel Infrared Window Channel
摘要: 本文以三种不同的方法,使用地球同步卫星向日葵8号的影像,进行侦测过冲云的测试,采用现有的水汽频道减红外窗区频道法与IRW-texture方法,并提供局地最小值法进行测试,此法结合上述二法的特点,但试图不要使用IRW-texture法中所需的数值预报的产品,且不要如水汽频道减红外窗区频道法,产生过多的过冲云像元。三个方法的实验结果与红绿蓝三色合成的侦测深对流产品、可见光和红外线色调强化影像比对,初步实验发现本文提供的局地最小值法是一个可行的尝试。
Abstract: Detection of overshooting top experiments with three different methods has been conducted by using Himawari-8 data. We used the IRW-texture method and the algorithm based on different brightness temperature between water vapor and infrared window channel in this study. And we provided a local minimum method which combined the characteristic of both methods as men-tioned above. In this method, we tried to avoid using information from numerical weather forecast as in IRW-texture method. And we designed the method to minor false detection as the algorithm based on different brightness temperature between water vapor and infrared window channel. To estimate the accuracy of overshooting top detection algorithms, results from those methods have been compared with deep convection RGB image, visible image, and enhanced infrared imagery. In this primary test, the local minimum method shows its potential in detection of overshooting top.
文章引用:周鉴本. 以向日葵8号观测侦测过冲云的方法与实验[J]. 地球科学前沿, 2016, 6(3): 190-200. http://dx.doi.org/10.12677/AG.2016.63022

参考文献

[1] Liou, K.N. (1992) Radiation and Cloud Process in the Atmosphere: Theory, Observation, and Modeling. Oxford University, Press, New York, 487 p.
[2] Anderson, J.G., Wilmouth, D.M., Smith, J.B. and Sayres, D.S. (2012) UV Dosage Levels in Summer: In-creased Risk of Ozone Loss from Convectively Injected Water Vapor. Science, 337, 835-839.
http://dx.doi.org/10.1126/science.1222978
[3] Dessler, A.E. and Sherwood, S.C. (2004) Effect of Convection on the Summer-time Extratropical Lower Stratasphere. Journal of Geophysical Research, 109, D2331.
http://dx.doi.org/10.1029/2004JD005209
[4] Ray, E.A., et al. (2004) Evidence of the Effect of Summertime Midlatitude Con-vection on the Subtropical Lower Stratosphere from CRYSTAL-FACE Tracer Measurements. Journal of Geophysical Research, 109, D18304.
http://dx.doi.org/10.1029/2004JD004655
[5] Setvak, M. and Doswell III, C.A. (1991) The AVHRR Channel 3 Cloud Top Reflectivity of Convective Stroms. Monthly Weather Review, 119, 841-847.
http://dx.doi.org/10.1175/1520-0493(1991)119<0841:TACCTR>2.0.CO;2
[6] Levizzani, V. and Setvak, M. (1996) Multis-pectral High-Resolution Satellite Observation og Plumes on Top of Convective Stroms. Journal of the Atmospheric Sciences, 53, 361-369.
http://dx.doi.org/10.1175/1520-0469(1996)053<0361:MHRSOO>2.0.CO;2
[7] Bedka, K., Brunner, J., Dworak, R., Feltz, W., Otkin, J. and Greenwald, T. (2010) Objective Satellite-Based Detection of Overshooting Tops Using Infrared Window Channel Brightness Temperature Gradients. Journal of Applied Meteorology and Climatology, 49, 181-202.
http://dx.doi.org/10.1175/2009JAMC2286.1
[8] Bedka, K.M. (2011) Overshooting Cloud Top Detections Using MSG SEVIRI Infrared Brightness Temperature and Their Relationship to Severe Weather over Europe. Atmospheric Research, 99, 175-189.
http://dx.doi.org/10.1016/j.atmosres.2010.10.001
[9] Dworak, R.K., Bedka, J. Brunner, and Feltz, W. (2012) Comparison between GOES-12 Overshooting-Top Detections, WSR-88D Radar Reflectivity, and Severe Storm Reports. Weather and Forecasting, 27, 684-699.
http://dx.doi.org/10.1175/WAF-D-11-00070.1
[10] Martin, D.W., Kohrs, R.A., Mosher, F.R., Medaglia, C.M. and Adamo, C. (2008) Over-Ocean Validation of the Global Convective Diagnostic. Journal of Applied Meteorology and Climatology, 47, 525-543.
http://dx.doi.org/10.1175/2007JAMC1525.1
[11] Fritz, S., and Laszlo, I. (1993) Detective of Water Vapor in the Stratosphere over Very High Cloud in Tropic. Journal of Geophysical Research, 98, 22959-22967.
http://dx.doi.org/10.1029/93JD01617
[12] Negri, A.J. (1982) Cloud-Top Structure of Tornadic Storms on 10 April 1979 from Rapid Scan and Stereo Satellite Observations. Bulletin of the American Meteorological Society, 63, 1151-1159.
[13] Adler, R.F., Markus, M.J. and Fenn, D.D. (1985) Detection of Severe Midwest Thunderstorms Using Geosynchronous Satellite Data. Monthly Weather Review, 113, 769-781.
http://dx.doi.org/10.1175/1520-0493(1985)113<0769:DOSMTU>2.0.CO;2
[14] Heymsfield, G.M., Fulton, R. and Spinhirne, J.D. (1991) Aircraft Overflight Measurements of Midwest Severe Storms: Implications on Geosynchronous Satellite Interpretations. Monthly Weather Review, 119, 436-455.
http://dx.doi.org/10.1175/1520-0493(1991)119<0436:AOMOMS>2.0.CO;2
[15] Hoinka, K.P. (1999) Temperature, Humidity, and Wind at the Global Tropopause. Monthly Weather Review, 127, 2248-2265.
http://dx.doi.org/10.1175/1520-0493(1999)127<2248:THAWAT>2.0.CO;2
[16] Brunner, J.C., Ackerman, S.A., Aachmeier, A.S. and Rab, R.M. (2007) A Quantitative Analysis of the Enhanced-V Feature in Relation to Severe Weather. Wea Forecasting, 22, 853-870.
http://dx.doi.org/10.1175/WAF1022.1
[17] Fujita, T.T. (1992) Memorrs of an Effort to Unlock the Mystery of Severe Strom. WRL Research Paper 239, University of Chicago Wind Research Lab, 298 p.
[18] Liu, C. and Zipser, E.J. (2005) Global Distribution of Convection Penetrating the Tropical Tropopause. Journal of Geophysical Research, 110, D23104.
http://dx.doi.org/10.1029/2005jd006063
[19] Japan Meteorological Agency (2015) Himawari-8/9 Himawari Standard Data User’s Guide, Version 1.1. http://www.data.jma.go.jp/mscweb/en/himawari89/space_segment/hsd_sample/HS_D_users_guide_en_v11.pdf