二自由度冗余驱动并联机器人非线性动态控制方法研究
Research on Nonlinear Dynamic Control Method of Two Degree of Freedom Redundantly Actuated Parallel Robot
摘要: 为了提高冗余并联机器人的控制精度,本文针对二自由度冗余驱动并联机器人,基于并联机器人同步耦合误差控制理论,提出了一种非线性同步控制方法。首先,利用李雅普诺夫稳定性理论,对提出的控制方法进行稳定性分析,证明控制系统渐进稳定;其次,借助MATLAB软件,对该控制方法进行动态仿真,仿真结果表明非线性同步控制方法具有较高的跟踪精度和控制精度,以及优良的同步控制性能;借助二自由度冗余驱动并联机器人实验台,对并联机器人非线性同步控制方法进行跟踪控制实验,实验结果与传统计算力矩控制方法相比,非线性同步控制方的有效性和优越性更好。研究结果表明:对冗余并联机器人的进一步研究具有指导意义。
Abstract: In order to improve the control precision of redundant parallel robots, aiming at two degrees of freedom redundant drive robot, basing on synchronous coupling error control theory of parallel robot, a nonlinear synchronization control method is proposed. First, the stability of the control method proposed is analyzed by using Lyapunov stability theory to prove asymptotic stability of the control system; secondly, using MATLAB software, carrying out a dynamic simulation with the control method, the simulation results showed that the nonlinear synchronous control method has relatively high tracking accuracy, control precision and excellent synchronous control performance; with two degrees of freedom parallel robot with redundantly actuation bench, carrying out a tracking control experiment on the parallel robot with the nonlinear synchronous control method, experiment results compared with conventional computed torque control method showed that nonlinear synchronization control method has better effectiveness and superiority. The results showed that: there is a guiding significance for further study of redundant parallel robots.
文章引用:惠记庄, 杨永奎. 二自由度冗余驱动并联机器人非线性动态控制方法研究[J]. 机械工程与技术, 2016, 5(2): 150-164. http://dx.doi.org/10.12677/MET.2016.52019

参考文献

[1] Mrtlet, J.P. (1996) Redundant Parallel Manipulators. Journal of Laboratory Robotics & Automation, 8, 17-24
[2] S.B. Niku. 机器人学导论——分析、系统及应用[M]. 孙富春, 朱继洪, 刘国栋, 等, 译. 电子工业出版社, 2004: 2-24.
[3] Yang, Z., Wu, J. and Mei, J. (2007) Motor-Mechanism Dynamic Model Based Neural Network Optimized Computed Torque Control of a High Speed Parallel Manipulator. Mechatronics, 17, 381-390.
http://dx.doi.org/10.1016/j.mechatronics.2007.04.009
[4] Ryu, S.J., Kim, J.W., Hwang, J.C., et al. (1998) Eclipse: An Over Actuated Parallel Mechanism for Rapid Machining. ASME International Mechanical Engineering Congress and Exposition, 79-86.
[5] Koren. Y. (1980) Cross-Coupled Biaxial Computer Control for Manufacturing Systems. Journal of Dynamic Systems, Measurement, and Control, 102, 265-272.
http://dx.doi.org/10.1115/1.3149612
[6] Yeh, S.-S. and Hsu, P.-L. (2002) Estimation of the Contouring Error Vector for the Cross-Coupled Control Design. IEEE/ASME Transactions on Mechatronics, 7, 44-51.
[7] Yeh, S.-S. and Hsu, P.-L. (2003) Analysis and Design of Integrated Control for Multi-Axis Motion Systems. IEEE Transactions on Control Systems and Technology, 11, 375-384.
http://dx.doi.org/10.1109/TCST.2003.810372
[8] Chuang, H.-Y. and Chang, Y.-C. (2000) A Novel Contour Error Compensator for 3-PRPS Platform. Journal of Robotic Systems, 17, 273-289.
http://dx.doi.org/10.1002/(SICI)1097-4563(200005)17:5<273::AID-ROB4>3.3.CO;2-C
[9] Sun, D. and Mills. J.K. (2002) Adaptive Synchronized Control for Coordination of Multirobot Assembly Tasks. IEEE Transactions on Robotics and Automation, 18, 498-510.
http://dx.doi.org/10.1109/TRA.2002.802229
[10] 惠记庄, 魏芳胜, 高凯, 等. 基于ADAMS的冗余驱动并联机器人动力学仿真研究[J]. 工程设计学报, 2012, 19(5): 362-365.
[11] 申浩锋. 驱动冗余并联机器人的非线性同步控制[D]: [硕士学位论文]. 西安: 西安电子科技大学, 2011: 23-30.