绿泥石的成因矿物学研究综述
Advances on Mineral Genesis of Chlorite: A Review
DOI: 10.12677/AG.2016.63028, PDF, HTML, XML,  被引量 下载: 4,356  浏览: 12,366  国家科技经费支持
作者: 刘燚平, 张少颖, 张华锋:中国地质大学(北京)地球科学与资源学院,北京
关键词: 绿泥石成因矿物学温度计氧逸度和硫逸度Chlorite Mineral Genesis Thermometer Oxygen Fugacity and Sulfide Fugacity
摘要: 绿泥石作为重要的层状硅酸盐可以形成并稳定在不同地质作用和条件下。其成因矿物学特点又能够反演约束形成时的物理化学条件,因此是一种重要的标型矿物。为此,本文对前人的最新研究成果进行简要评述,并对山西中条山铜矿峪和西藏拿诺斑岩铜矿成矿期绿泥石数据进行重新计算和分析。结合矿区矿物组合特征与流体包裹体数据,探讨分析绿泥石形成条件与成矿作用条件的吻合性,从而分析方法的可靠性和应用性。
Abstract: As an important phyllosilicate, chlorite can be found in various geological environments. Its genetic mineralogical characteristics can provide important information for the formation conditions, leading it to be a significant typomorphic mineral. Therefore, the aim of this study is to give a review on some progresses on mineral genesis of chlorite. Finally, we applied viable methods to analyze natural cases of the Tongkuangyu porphyry copper deposit from the Zhongtiao Mountain and Naruo porphyry copper deposit from Tibet. Based on ore mineral assemblages and trapped fluid inclusion data, we would analyze the estimated results of chlorite temperatures, oxygen fugcity and sulfur fugacity to discuss the congruency of formation conditions between chlorite and metallogenesis, and consequently test the reliability and applicability of these methods.
文章引用:刘燚平, 张少颖, 张华锋. 绿泥石的成因矿物学研究综述[J]. 地球科学前沿, 2016, 6(3): 264-282. http://dx.doi.org/10.12677/AG.2016.63028

参考文献

[1] Zane, A. and Weiss, Z. (1998) A Procedure for Classifying Rock-Forming Chlorites Based on Microprobe Data. Rendiconti Lincei, 9, 51-56.
http://dx.doi.org/10.1007/BF02904455
[2] Velde, S. and Hillier ANO, B. (1991) Octahedral Occupancy and the Chemical Composition of Diagenetic (Low- Temperature) Chlorites. Clay Minerals, 26, 149-168.
http://dx.doi.org/10.1180/claymin.1991.026.2.01
[3] De caritat, P., Hutcheon, I. and Walshe, J.L. (1993) Chlorite Geother-mometry: A Review. Clays and Clay Minerals, 41, 219-239.
http://dx.doi.org/10.1346/CCMN.1993.0410210
[4] Inoue, A., Meunier, A., Patrier-Mas, P., et al. (2009) Application of Chemical Geothermometry to Low-Temperature Trioctahedral Chlorites. Clays and Clay Minerals, 57, 371-382.
http://dx.doi.org/10.1346/CCMN.2009.0570309
[5] Bourdelle, F., Parra, T., Chopin, C., et al. (2013) A New Chlorite Geothermometer for Diagenetic to Low-Grade Metamorphic Conditions. Contributions to Mineralogy and Petrology, 165, 723-735.
http://dx.doi.org/10.1007/s00410-012-0832-7
[6] Hey, M.H. and Hey, M.H. (1954) A New Review of the Chlorites. Minera-logical Magazine, 30, 277-292.
http://dx.doi.org/10.1180/minmag.1954.030.224.01
[7] Foster, M D. (1962) Interpretation of the Composition and a Classifi-cation of the Chlorites. US Geology Survey Professional Paper, 414A. US Government Printing Office, Washington DC, 1-30.
[8] Deer, W.A., Howie, R.A. and Iussman, J. (1962) Rock-Forming Minerals: Sheet Silicates. Longman, London, 270 p.
[9] Wiewióra, A. and Weiss, Z. (1990) Crystallochemical Classifications of Phyllosilicates Based on the Unified System of Pro-jection of Chemical Composition: II. The Chlorite Group. Clay Minerals, 25, 83-92.
http://dx.doi.org/10.1180/claymin.1990.025.1.09
[10] Zane, A. and Weiss, Z. (1998) A Procedure for Classifying Rock-Forming Chlorites Based on Microprobe Data. Rendiconti Lincei, 9, 51-56.
http://dx.doi.org/10.1007/BF02904455
[11] Hayes, J.B. (1970) Polytypism of Chlorite in Sedimentary Rocks. Clays and Clayminerals, 18, 285-306.
http://dx.doi.org/10.1346/CCMN.1970.0180507
[12] Weaver, C.E., Highsmith, P.B. and Wampler, J.M. (1984) Chlorite: in Shale-Slate Metamorphism in the Southern Appalachians. Elsevier, Amsterdam, 99-139.
http://dx.doi.org/10.1016/b978-0-444-42264-4.50010-4
[13] Walker, J.R. (1989) Polytypism of Chlorite in Very Low Grade Metamorphic Rocks. American Mineralogist, 74, 738- 743.
[14] Walker, J.R. (1993) Chlorite Polytype Geothermometry. Clays and Clay Minerals, 41, 260-260.
http://dx.doi.org/10.1346/CCMN.1993.0410212
[15] Schmidt, D. and Livi, K.J.T. (1999) HRTEM and SAED Investigations of Polytypism, Stacking Disorder, Crystal Growth, and Vacancies in Chlorites from Subgreen Schist Facies Outcrops. American Mine-ralogist, 84, 160-170.
http://dx.doi.org/10.2138/am-1999-1-218
[16] 王勇生, 朱光, 刘国生. 糜棱岩化过程中绿泥石多型与结晶度的演变——以郯庐断裂带南段为例[J]. 矿物学报, 2004, 24(3): 271-277.
[17] Bourdelle, F. and Cathelineau, M. (2015) Low-Temperature Chlorite Geothermometry: A Graphical Representation Based on a T-R2+–Si Diagram. European Journal of Mineralogy, 27, 617-626.
http://dx.doi.org/10.1127/ejm/2015/0027-2467
[18] Walshe, J.L. (1986) A Six-Component Chlorite Solid Solution Model and the Conditions of Chlorite Formation in Hydrothermal and Geothermal Systems. Economic Geology, 81, 681-703.
http://dx.doi.org/10.2113/gsecongeo.81.3.681
[19] Hutcheon, I. (1990) Clay Carbonate Reactions in the Venture Area, Scotian Shelf, Nova Scotia, Canada. The Geochemical Society, Special Publication, 2, 199-212.
[20] Vidal, O., Parra, T. and Trotet, F. (2001) A Thermodynamic Model for Fe-Mg Aluminous Chlorite Using Data from Phase Equilibrium Experiments and Natural Pelitic Assemblages in the 100 to 600 C, 1 to 25 kb Range. American Journal of Science, 301, 557-592.
http://dx.doi.org/10.2475/ajs.301.6.557
[21] Vidal, O., Parra, T. and Vieillard, P. (2005) Thermodynamic Properties of the Tschermak Solid Solution in Fe-Chlorite: Application to Natural Examples and Possible Role of Oxidation. American Mineralogist, 90, 347-358.
http://dx.doi.org/10.2138/am.2005.1554
[22] Vidal, O., De Andrade, V., Lewin, E., et al. (2006) P-T-Deformation-Fe3+/Fe2+ Mapping at the Thin Section Scale and Comparison with XANES Mapping: Application to a Garnet-Bearing Metapelite from the Sambagawa Metamorphic Belt (Japan). Journal of Metamorphic Geology, 24, 669-683.
http://dx.doi.org/10.1111/j.1525-1314.2006.00661.x
[23] Lanari, P., Wagner, T. and Vidal, O. (2014) A Thermodynamic Model for Di-Trioctahedral Chlorite from Experimental and Natural Data in the System MgO-FeO-Al2O3-SiO2-H2O: Applications to P-T Sections and Geothermometry. Contributions to Mineralogy and Petrology, 167, 1-19.
http://dx.doi.org/10.1007/s00410-014-0968-8
[24] Battaglia, S. (1999) Applying X-Ray Geothermometer Diffraction to a Chlorite. Clays and Clay Minerals, 47, 54-63.
http://dx.doi.org/10.1346/CCMN.1999.0470106
[25] Rae, A.J., O’Brien, J., Ramirez, E., et al. (2011) The Application of Chlo-rite Geothermometry to Hydrothermally Altered Rotokawa Andesite, Rotokawa Geothermal Field. NZ Geothermal Workshop, 33, 8.
[26] Bryndzia, L.T. and Scott, S.D. (1987) The Composition of Chlorite as a Function of Sulfur and Oxygen Fugacity; An Expe-rimental Study. American Journal of Science, 287, 50-76.
http://dx.doi.org/10.2475/ajs.287.1.50
[27] Bailey, S.W. (1979) Report of the Clay Minerals Society Nomenclature Committee for 1977 and 1978. Clays & Clay Minerals, 27, 238-239.
http://dx.doi.org/10.1346/CCMN.1979.0270310
[28] Cathelineau, M. and Nieva, D. (1985) A Chlorite Solid Solution Geo-thermometer the Los Azufres (Mexico) Geothermal System. Contributions to Mineralogy and Petrology, 91, 235-244.
http://dx.doi.org/10.1007/BF00413350
[29] Bayliss, P. (1975) Nomenclature of the Trioctahedral Chlorites. Canadian Mine-ralogist, 13, 178-180.
[30] Brown, B.E. and Bailey, S.W. (1963) Chlorite Polytypism: II. Crystal Structure of a One-Layer Cr-Chlorite. The American Minerakogist, 48, 41-62. Bailey, S.W. (1988) X-Ray Diffraction Identification of the Polytypes of Mica, Serpentine, and Chlorite. Clays & Clay Minerals, 36, 193-213.
http://dx.doi.org/10.1346/CCMN.1988.0360301
[31] Karpova, G.V. (1969) Clay Mineral Post-Sedimentary Ranks in Terrigenous Rocks. Sedimentology, 13, 5-20.
http://dx.doi.org/10.1111/j.1365-3091.1969.tb01118.x
[32] Kranidiotis, P. and MacLean, W.H. (1987) Systematics of Chlorite Alteration at the Phelps Dodge Massive Sulfide Deposit, Matagami, Quebec. Economic Geology, 82, 1898-1911.
http://dx.doi.org/10.2113/gsecongeo.82.7.1898
[33] Cathelineau, M. (1988) Cation Site Occupancy in Chlorites and Illites as Function of Temperature. Clay Minerals, 23, 471-485.
http://dx.doi.org/10.1180/claymin.1988.023.4.13
[34] Jowett, E.C. (1991) Fitting Iron and Magnesium into the Hydrothermal Chlorite Geothermometer. GAC/MAC/SEG Joint Annual Meeting, Toronto, 27-29 May 1991, Program with Abstracts 16, A62.
[35] Zang, W. and Fyfe, W.S. (1995) Chloritization of the Hydrothermally Altered Bedrock at the Igarapé Bahia Gold Deposit, Carajás, Brazil. Mineralium Deposita, 30, 30-38.
http://dx.doi.org/10.1007/BF00208874
[36] Xie, X., Byerly, G.R. and Ferrell, R.E. (1996) IIb Trioctahedral Chlorite from the Barberton Greenstone Belt: Crystal Structure and Rock Composition Constraints with Implications to Geothermometry. Contributions to Mineralogy & Petrology, 126, 275-291.
http://dx.doi.org/10.1007/s004100050250
[37] El-Sharkawy, M.F. (2000) Talc Mineralization of Ultramafic Affinity in the Eastern Desert of Egypt. Mineralium Deposita, 35, 346-363.
http://dx.doi.org/10.1007/s001260050246
[38] Rausell-Colom, J.A., Wiewiora, A. and Matesanz, E. (1991) Relation between Composition and d001 for Chlorite. American Mineralogist, 76, 1373-1379.
[39] Nieto, F. (1997) Chemical Composition of Metapelitic Chlorites: X-Ray Diffraction and Optical Property Approach. European Journal of Mineralogy, 9, 829-842.
http://dx.doi.org/10.1127/ejm/9/4/0829
[40] 王勇生, 朱光, 王道轩, 等. 地质温度计在郯庐断裂带南段低温糜棱岩中的尝试[J]. 中国地质, 2005, 32(4): 625- 633.
[41] Котов, Н.В. (1975) Мускови-хдоритовый палеотермометр. Докл. АН СССР, Т. No. 3, 222-227.
[42] Bourdelle, F., Parra, T., Beyssac, O., et al. (2013) Clay Minerals as Geo-Thermometer: A Comparative Study Based on High Spatial Resolution Analyses of Illite and Chlorite in Gulf Coast Sandstones (Texas, USA). American Mineralogist, 98, 914-926.
http://dx.doi.org/10.2138/am.2013.4238
[43] 孙军刚, 李洪英, 刘晓煌, 等. 山西铜矿峪铜矿床绿泥石特征及其地质意义[J]. 矿物岩石地球化学通报, 2015(6): 1142-1154.
[44] 杨超, 唐菊兴, 宋俊龙, 等. 西藏拿若斑岩型铜(金)矿床绿泥石特征及地质意义[J]. 地质学报, 2015, 89(5): 856- 872.
[45] Jiang, Y., Niu, H., Bao, Z., et al. (2014) Fluid Evolution of the Tong-kuangyu Porphyry Copper Deposit in the Zhongtiaoshan Region: Evidence from Fluid Inclusions. Ore Geology Reviews, 63, 498-509.
http://dx.doi.org/10.1016/j.oregeorev.2014.05.018
[46] 徐文炘, 郭新生, 冀树揩, 等. 铜矿峪铜矿床地球化学的研究[J]. 矿产与地质, 1995, 2(46): 77-86.
[47] 许庆林, 孙丰月, 张晗, 等. 山西中条山铜矿峪铜矿流体包裹体、锆石U-Pb年龄、Hf同位素及其地质意义[J]. 吉林大学学报: 地球科学版, 2012(S3): 64-80.
[48] Prouteau, G. and Scaillet, B. (2003) Experimental Con-straints on the Origin of the 1991 Pinatubo Dacite. Journal of Petrology, 44, 2203-2241.
http://dx.doi.org/10.1093/petrology/egg075
[49] Dora, M.L. and Randive, K.R. (2015) Chloritisation along the Thanewasna Shear Zone, Western Bastar Craton, Central India: Its Genetic Linkage to Cu-Au Mineralisation. Ore Geology Reviews, 70, 151-172.
http://dx.doi.org/10.1016/j.oregeorev.2015.03.018
[50] Dyar, M.D., Guidotti, C.V., Harper, G.D., et al. (1992) Controls on Ferric Iron in Chlorite. Geological Society of America, Abstracts with Programs, 24, 7.
[51] Chlorites, L.J. (1988) Metamorphic Petrology. Reviews in Mineralogy and Geochemistry, 19, 405-453.