均相沉积法制备磁性羟基磷灰石
Fabrication of Magnetic Hydroxyapatite by a Homogeneous Precipitation Method
DOI: 10.12677/MS.2016.64028, PDF, HTML, XML, 下载: 2,397  浏览: 4,681  国家科技经费支持
作者: 闫 艳, 张 熠, 左 奕, 李玉宝, 李吉东:四川大学分析测试中心,纳米生物材料研究中心,四川 成都
关键词: 羟基磷灰石四氧化三铁磁性柠檬酸铵Hydroxyapatite Ferroferric Oxide Magnetism Ammonium Citrate
摘要: 本文将Fe3O4纳米颗粒分散在Ca、P溶液中,通过尿素酶催化水解尿素提高Ca、P溶液PH值,以纳米Fe3O4为成核位点,通过均相沉积法制备具有核–壳结构的Fe3O4/HA磁性复合物。通过X射线衍射(XRD)、透射电镜(TEM)、扫描电镜(SEM)等分析手段分析探讨了Ca/P摩尔比和分散剂柠檬酸铵用量对磁性羟基磷灰石复合颗粒组成、结构和颗粒尺寸的影响。结果表明当溶液中Ca/P摩尔比为5:3,分散剂柠檬酸铵用量为1.5~3.0 g/500ml,Fe3O4磁性粒子基本完全被沉积的羟基磷灰石包覆,可制得颗粒尺寸较小的球状核壳结构磁性Fe3O4/HA复合物。
Abstract: A core-shell nano-iron oxide/hydroxyapatite (Fe3O4/HA) composite was synthesized by using a homogeneous precipitation method. Fe3O4 nano-particles synthesized by chemical precipitation were dispersed and used as substrate in Ca, P solution to deposit HA on the Fe3O4 spheres through slowly increase of pH by decomposition of urea using urease as the catalytic. The influence of Ca/P molar ratio and varying dosages of dispersing agent (ammonium citrate) on the composition, structure and particle diameter of fabricated Fe3O4/HA was investigated. The obtained samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and scan-ning electron microscopy (SEM). The results showed that a spherical core-shell Fe3O4/HA composite with magnetic properties, and smaller particle size were obtained under Ca/P molar ratio of 5:3 and ammonium citrate concentration of 1.5 - 3.0 g/500ml.
文章引用:闫艳, 张熠, 左奕, 李玉宝, 李吉东. 均相沉积法制备磁性羟基磷灰石[J]. 材料科学, 2016, 6(4): 223-229. http://dx.doi.org/10.12677/MS.2016.64028

参考文献

[1] 王君鳌, 林定坤. 骨质疏松症的研究和进展[J]. 中国骨质疏松杂志, 2001, 7(4): 372-374.
[2] Langer, R. and Vacanti, J.P. (1993) Tissue Engineering. Science, 260, 920-926.
http://dx.doi.org/10.1126/science.8493529
[3] 李玉宝. 生物医学材料.北京: 化学工业出版社. 2003.
[4] 俞耀庭, 张兴栋. 生物医用材料[M]. 天津: 天津大学出版社, 2000.
[5] Wang, L., Yang, Z., Gao, J., et al. (2006) A Biocompatible Method of Decorporation: Bisphosphonate-Modified Magnetite Nanoparticles to Remove Uranyl Ions From Blood. Journal of the American Chemical Society, 128, 13358- 13359.
http://dx.doi.org/10.1021/ja0651355
[6] Kim, J., Lee, J.E., Lee, J., et al. (2006) Magnetic Fluorescent Delivery Vehicle Using Uniform Mesoporous Silica Spheres Embedded with Monodisperse Magnetic and Semiconductor Nanocrystals. Journal of the American Chemical Society, 128, 688-689.
http://dx.doi.org/10.1021/ja0565875
[7] Jun, Y.W., Huh, Y.M., Choi, J.S., Lee, J.H., Song, H.T., Kim, S., Yoon, S., Kim, K.S., Shin, J.S., Suh, J.S. and Cheon, J. (2005) Nanoscale Size Effect of Magnetic Nanocrystals and Their Utilization for Cancer Diagnosis via Magnetic Resonance Imaging. Journal of the American Chemical Society, 127, 5732-5733.
http://dx.doi.org/10.1021/ja0422155
[8] 沈薇薇. 纳米磁性多孔羟基磷灰石生物陶瓷的研究[D]: [硕士学位论文]. 武汉: 武汉理工大学, 2010.
[9] Li, X., Wei, J., Aifantis, K.E., et al. (2016) Current Investigations into Magnetic Nanoparticles for Biomedical Applications. Journal of Biomedical Materials Research Part A, 104, 1285-1296.
http://dx.doi.org/10.1002/jbm.a.35654
[10] Sadat-Shojai, M., Khorasani, M.T., Dinpanah-Khoshdargi, E., et al. (2013) ChemInform Abstract: Synthesis Methods for Nanosized Hydroxyapatite with Diverse Structures. Acta Biomaterialia, 9, 7591-7621.
http://dx.doi.org/10.1016/j.actbio.2013.04.012
[11] Meng, J., Zhang, Y., Qi, X., et al. (2010) Paramagnetic Nanofibrous Com-posite Films Enhance the Osteogenic Responses of Pre-Osteoblast Cells. Nanoscale, 2, 2565-2569.
http://dx.doi.org/10.1039/c0nr00178c
[12] Bañobrelópez, M., Piñeiroredondo, Y., Santis, R.D., et al. (2011) Poly(caprolactone) Based Magnetic Scaffolds for Bone Tissue Engineering. Journal of Applied Physics, 109, 07B313-07B313-3.
[13] Bock N, Riminucci A, Dionigi C, et al. (2010) A Novel Route in Bone Tissue Engineering: Magnetic Biomimetic Scaffolds. Acta Biomaterialia, 6, 786-796.
http://dx.doi.org/10.1016/j.actbio.2009.09.017
[14] Heidari, F., Razavi, M., Bahrololoom, M.E., et al. (2016) Mechanical Properties of Natural Chitosan/Hydroxyapatite/ Magnetite Nanocomposites for Tissue Engineering Applications. Materials Science & Engineering C Materials for Biological Applications, 65, 338-344.
http://dx.doi.org/10.1016/j.msec.2016.04.039
[15] Wang, H. (2015) Biocompatibility and Osteogenic Capacity of Borosilicate Bioactive Glass Scaffolds Loaded with Fe3O4 Magnetic Nanoparticles. Journal of Materials Chemistry B, 3, 4377-4387.
http://dx.doi.org/10.1039/C5TB00062A
[16] 鲍志伟. 磁性荧光羟基磷灰石纳米材料的制备与表征[D]: [硕士学位论文]. 青岛: 青岛科技大学, 2011.
[17] 曾晓波, 胡灏, 解丽芹, 等. 超顺磁性磷酸钙复合支架的制备及性能研究[J]. 无机材料学报, 2013(1): 79-84.
[18] 孙淑珍, 徐晓虹, 彭长琪, 等. 能激发骨形成的磁性多孔陶瓷人工骨材料研究[J]. 武汉工业大学学报, 1994(3): 99-103.
[19] Li, Q., Zhou, G., Wang, T., et al. (2015) Investigations into the Biocompatibility of Nanohydroxyapatite Coated Magnetic Nanoparticles under Magnetic Situation. Journal of Nanomaterials, 2015, 1-10.
[20] Dias, A.M.G.C., Hussain, A., Marcos, A.S., et al. (2011) A Biotechnological Perspective on the Application of Iron Oxide Magnetic Colloids Modified with Polysaccharides. Biotechnology Advances, 29, 142-155.
http://dx.doi.org/10.1016/j.biotechadv.2010.10.003
[21] 张熠, 李吉东, 左奕, 等. 磁性羟基磷灰石复合物的制备与表征[J]. 功能材料, 2012, 43(10): 1273-1276.
[22] Jokanović, V., Jokanović, B., Marković, D., et al. (2008) Kinetics and Sintering Mecha-nisms of Hydro-Thermally Obtained Hydroxyapatite. Materials Chemistry and Physics, 111, 180-185.
[23] Fathi, M.H. and Hanifi, A. (2007) Evaluation and Characterization of Nanostructure Hydroxyapatite Powder Prepared by Simple Sol-Gel Method. Materials Letters, 61, 3978-3983.
http://dx.doi.org/10.1016/j.matlet.2007.01.028