氢氧复合疏水催化剂Pt-SDB的制备
Preparation of the Hydrophobic Catalyst Pt-SDB of Hydrogen-Oxygen Combination
DOI: 10.12677/NST.2016.43009, PDF, HTML, XML,  被引量 下载: 1,832  浏览: 4,492 
作者: 张瑞莹, 胡石林, 吴全锋:中国原子能科学研究院,北京
关键词: 氢氧复合疏水催化剂正交实验Hydrogen-Oxygen Combination Hydrophobic Catalyst Orthogonal Experiment
摘要: 由于铂对氢氧复合反应的催化能力很强,在大浓度反应中可能产生热量积累,破坏载体结构及铂的分布进而导致爆炸等安全事故,自身能使催化反应平稳发生的疏水性催化剂在实际应用中意义重大。本文设计正交实验采用浸渍手段制备疏水性催化剂Pt-SDB (聚苯乙烯-二乙烯基苯),通过常温氢氧复合反应测试,研究浸渍液浓度、浸渍静置时间、干燥温度、干燥时间、还原温度、还原时间对制得催化剂样品催化反应程度和稳定性的影响顺序。挑取实验样品进行微观分析,结合正交实验结果发现催化剂催化反应稳定性依赖于载体的多孔结构。综合各方面考虑,确定了一组制备条件作为进一步研究的基础。
Abstract: In the combination of hydrogen and oxygen, the catalytic performance of platinum is prominent. Heat can be accumulated in large-amount hydrogen-oxygen combinations, which will destroy the structure of carriers and the distribution of platinum, leading to accidents like explosion. So the hydrophobic catalyst which can catalyze hydrogen-oxygen combination smoothly is meaningful in practical applications. In this article, hydrophobic catalyst, Pt-SDB (polystyrene-divinyl benzene), is prepared by impregnation and an orthogonal experiment is performed. Tested by ambient- temperature hydrogen-oxygen combination, through the degree and stability of the combination, the effect order of precursor-concentration, standing-time, drying-temperature, drying-time, re-duction-temperature, and reduction-time to so-prepared catalyst is studied. Some samples are se-lected for microanalysis, which, combined with the results of orthogonal experiment, indicates that the ability to smooth the catalytic combination depends on the porous structure of the carrier. Taking every aspect into account, one series of preparation conditions is confirmed for further research.
文章引用:张瑞莹, 胡石林, 吴全锋. 氢氧复合疏水催化剂Pt-SDB的制备[J]. 核科学与技术, 2016, 4(3): 69-77. http://dx.doi.org/10.12677/NST.2016.43009

参考文献

[1] Kumm, W.H. (1990) Marine and Naval Applications of Fuel Cells for Propulsion: The Process Selection. Journal of Power Sources, 29, 169-179.
http://dx.doi.org/10.1016/0378-7753(90)80017-8
[2] Henrie, J.O. (1988) The Effects of Hydrogen Generation on Radioactive Waste Handling Technology. Transactions of the American Nuclear Society, 57, 729-736.
[3] 池风东. 实用氢化学[M]. 北京: 国防工业出版社, 1996: 194-204.
[4] 申泮文, 曾爱冬. 氢与氢能[M]. 北京: 科学出版社, 1988: 2-3.
[5] Chuang, K.T., Seddon, W.A., Quaiattini, R.J., et al. (1986) Safe Recombination of Hydrogen and Oxygen with Wetproofed Catalysts. Hydrogen Systems, 1986, 507-514.
http://dx.doi.org/10.1016/b978-1-4832-8375-3.50106-5
[6] Henrie, J.O. (1989) The Effects of Hy-drogen Generation on Radioactive Waste Handing Technology. Nuclear Technology, 87, 729-736.
[7] Stevens, W.H. (1972) Process and Catalyst for Enriching a Fluid with Hydrogen Isotopes. Canadian Patent: 907292, 1972-08-15.
[8] Butler, J.P., Rolston, J.H. and Stevens, W.H. (1978) Novel Catalysts for Isotopic Exchange between Hydrogen and Liquid Water. ACS Symposium Series, 1978, 93-109.
[9] Chuang, K.T., Quaiattini, R.J., Thatcher, D.R.P., et al. (1987) Development of a Wetproofed Catalyst Recombiner for Removal of Airborne Tritium. Applied Catalysis, 30, 215-224.
http://dx.doi.org/10.1016/S0166-9834(00)84114-7
[10] 但贵萍, 卢瑶章. 大粒径疏水催化剂的制备及氧化氚氢(HT)的性能研究[J]. 原子能科学技术, 1999, 33(1): 12-17.
[11] 张龙龙, 蒋亚雄, 巴俊洲. 常温氢氧化合催化剂的研究[J]. 工业催化, 2008, 16(9): 18-21.
[12] 孙颖, 王和义, 桑革, 等. 反应堆含氚重水提氚关键技术研究进展[J]. 中国工程科学, 2007, 9(5): 1-6.
[13] 李俊华. 憎水催化剂的研制及氢-水液相催化交换工艺研究[D]: [博士学位论文]. 中国原子能科学研究院, 2001.
[14] Fu, L. and Chuang, K.T. (1989) Control of Nitrogen Oxide (NOx) Emissions by Selective Catalytic Reduction with Hydrogen over Hydrophobic Catalysts. Energy & Fuels, 3, 740-743.
http://dx.doi.org/10.1021/ef00018a015
[15] 邵明昶. 常温催化氢氧化合过程研究[D]: [硕士学位论文]. 中国原子能科学研究院, 2002.