小行星撞击地球的能量
The Energy of an Asteroid Hitting the Earth
DOI: 10.12677/AAS.2016.43006, PDF, HTML, XML, 下载: 2,436  浏览: 6,088  国家自然科学基金支持
作者: 何超琼, 郭建坡, 仓荣琴, 胡娟秀:普洱学院理工学院,云南 普洱;云南省高校力学开放重点实验室,云南 普洱
关键词: 小行星地球太阳系Asteroids Earth Solar System
摘要: 小行星撞击地球可能导致了6500万年前恐龙灭绝。本文的研究目标是:在质量一定的情况下,小行星的远日点距离和近日点距离的差异,究竟会在多大程度上影响小行星撞击地球的能量。我们采用的小行星的远日点距离分别为1.90、2.15、2.65、3.25、3.50、3.95和5.2075AU,近日点距离分别为1.0009、0.95、0.90、0.85、0.80、0.75、0.70、0.65、0.60、0.55和0.50AU。我们的计算结果表明:小行星的远日点距离越大,撞击地球的能量越大;小行星的近日点距离越小,撞击地球的能量越大;小行星撞击地球的最小动能为1.0725 1023 J,最大动能为5.82801023 J。
Abstract: An asteroid hitting the Earth may cause the extinction of dinosaurs, 65 million years ago. The re-search aim of this paper is how the energy of the asteroid hitting the Earth can be depending on the chosen of the aphelion distance and the perihelion distance, while the mass of the asteroid is fixed. The adopted aphelion distance of the asteroid is 1.90, 2.15, 2.65, 3.25, 3.95 and 5.2075 AU, respectively. The adopted perihelion distance of the asteroid is 1.0009, 0.95, 0.90, 0.85, 0.80, 0.75, 0.70, 0.65, 0.60, 0.55 and 0.50 AU, respectively. Our calculated results show that the larger the aphelion distance of the asteroid is, the larger the energy of its hitting the Earth is; the smaller the perihelion distance of the asteroid is, the larger the energy of its hitting the Earth is; the minimum kinetic energy of the asteroid hitting the earth is 1.07251023 J, and the maximum kinetic energy is 5.82801023 J.
文章引用:何超琼, 郭建坡, 仓荣琴, 胡娟秀. 小行星撞击地球的能量[J]. 天文与天体物理, 2016, 4(3): 47-55. http://dx.doi.org/10.12677/AAS.2016.43006

参考文献

[1] DeMeo F E, Carry B. Natur., 2014, 505: 629 http://dx.doi.org/10.1038/nature12908
[2] Fernández Y R, Li J Y, Howellc E S, Woodney L M. Treatiseon // Schubert, G., Editor in Chief, Spohn, T., Editor, Geophysics. 2nd Edition, Volume10 Chapter 15
[3] Clark B E, Ziffer J, Nesvorný D, et al. JGRE, 2010, 115: E06005
[4] Ockert-Bell M E, Clark B E, Shepard M K, et al. Icar., 2010, 210: 674 http://dx.doi.org/10.1016/j.icarus.2010.08.002
[5] Fornasier S, Clark B E, Dotto E. Icar., 2011, 214: 131 http://dx.doi.org/10.1016/j.icarus.2011.04.022
[6] Carry B. Planetary and Space Science, 2012, 73: 98 http://dx.doi.org/10.1016/j.pss.2012.03.009
[7] Bottke W F Jr, Durda D D, Nesvorný D, et al. Icar., 2005, 175: 111
[8] 约翰•巴利, 波•瑞普斯, 著. 萧耐园译. 恒星与行星的诞生. 长沙: 湖南科学技术出版社, 2009
[9] Morbidelli A, Lunine J I, O’Brien D P, et al. AREPS, 2012, 40: 251
[10] Britt D T, Consolmagno G J. M&PS, 2003, 38: 1161 http://dx.doi.org/10.1111/j.1945-5100.2003.tb00305.x
[11] Consolmagno G J, Britt D T. M&PS, 1998, 33: 1231 http://dx.doi.org/10.1111/j.1945-5100.1998.tb01308.x
[12] Pravec P, Harris A W. Icar., 2000, 148: 12 http://dx.doi.org/10.1006/icar.2000.6482
[13] Margot J L, Nolan M C, Benner L A M, et al. Sci., 2002, 296: 1445 http://dx.doi.org/10.1126/science.1072094
[14] Descamps P, Marchis F, Berthier J, et al. Icar., 2011, 211: 1022 http://dx.doi.org/10.1016/j.icarus.2010.11.016
[15] Taylor P A, Howell E S, Nolan M C, et al. AAS/DPSMA, 2013, 45: 208.08
[16] Brown P. JIMO, 2013, 41: 22.
[17] Alvarez L W, Alvarez W, Asaro F, Michel H V. Sci., 1980, 208: 1095 http://dx.doi.org/10.1126/science.208.4448.1095
[18] Allen C W. Astrophysical Quantities. London: The Athlone Press, 1973
[19] David F. APS/4CF, 1998, J1: 2
[20] Sackmann I-J, Booththroyd A I, Kraemer K E. ApJ, 1993, 418: 457 http://dx.doi.org/10.1086/173407
[21] Silvotti R, Schuh S, Janulis R, et al. Natur., 2007, 449: 189 http://dx.doi.org/10.1038/nature06143
[22] Schröder K-P, Smith R C. MNRAS, 2008, 386: 155 http://dx.doi.org/10.1111/j.1365-2966.2008.13022.x
[23] Kunitomo M, Ikoma M, Sato B, et al. ApJ, 2011, 737: 66 http://dx.doi.org/10.1088/0004-637X/737/2/66
[24] Veras D, Wyatt M C. MNRAS, 2012, 421: 2969 http://dx.doi.org/10.1111/j.1365-2966.2012.20522.x
[25] Veras D, Wyatt M C, Mustill A J, et al. MNRAS, 2011, 417: 2104 http://dx.doi.org/10.1111/j.1365-2966.2011.19393.x
[26] Guo J P, Lin L, Bai C Y, Liu J Z. Ap&SS, 2016, 361: 122 http://dx.doi.org/10.1007/s10509-016-2684-5