嵌锂正极材料LixMn3-xO4和LiFeO2的制备和物性研究
Synthesis and Study on Physical Properties of Li-Inserted Cathode Materials LixMn3-xO4 and LiFeO2
DOI: 10.12677/MP.2016.64009, PDF, HTML, XML, 下载: 1,984  浏览: 5,662  科研立项经费支持
作者: 马 彤, 杨淑敏, 王立勇, 岂云开, 顾建军*:河北民族师范学院物理与电子工程学院,河北 承德
关键词: 锂离子电池正极材料电化学性能Lithium Ion Battery Cathode Materials Electrochemical Performance
摘要: 本文采用溶胶凝胶法制备了LixMn3-xO4(X = 0.7, 1.0, 1.2, 1.4, 1.6)和LiFeO2锂离子电池正极材料,并对其结构、磁性、电化学性能进行了研究。实验发现,LixMn3-xO4系列样品呈现尖晶石结构,室温下显示顺磁特性,x = 1.2的样品首次充放电容量分别为58.16 mA h/g和29.47 mA h/g,LiFeO2样品为α-NaFeO2型铁氧体结构,空间群为Fm3m,室温下呈现软磁特性,首次充放电容量为80.95 mA h/g和38.50 mA h/g。本文详细的分析了系列样品的结构、磁性与电化学性能之间的关系,为提高嵌锂正极材料容量、稳定性以及充放电能力等性能提供了实验依据。
Abstract: In this work, lithium ion battery cathode material LixMn3-xO4(X = 0.7, 1.0, 1.2, 1.4, 1.6) and LiFeO2 were synthesized by a sol-gel method. At the same time, the structure, magnetism and electro-chemical performance of samples were studied. The results showed that LixMn3-xO4 were spinel structure and showed paramagnetic properties at room temperature. The initial charge-discharge capacities of sample with x = 1.2 were 58.16 mA∙h/g and 29.47 mA∙h/g. LiFeO2 sample with space group Fm3m exhibited a α-NaFeO2 ferrites structure, show soft magnetic properties at room temperature. The initial charge-discharge capacities of LiFeO2 sample were 80.95 mA∙h/g and 38.50 mA∙h/g. The relationship between the structure, the magnetism and electrochemical performance of series samples was analyzed deeply, which provided experimental basis for improving the capacity, stability and charge-discharge capacity properties of lithium cathode material.
文章引用:马彤, 杨淑敏, 王立勇, 岂云开, 顾建军. 嵌锂正极材料LixMn3-xO4和LiFeO2的制备和物性研究[J]. 现代物理, 2016, 6(4): 83-91. http://dx.doi.org/10.12677/MP.2016.64009

参考文献

[1] Abraham, K.M. (1993) Directions in Secondary Lithium Battery Research and Development. Electochimica Acta, 38, 1233-1248.
[2] Saidi, M.Y., Barker, J. and Koksbang, R. (1996) Structural and Electrochemical Investigation of Lithium Insertion in the Li1-xMN2O4 Spinel Phase. Electochimica Acta, 41, 199-204.
[3] Li, W., Reimers, J.N. and Dahn, J.R. (1992) Crystal Structure of LixNi2−xO2 and a Lattice-Gas Model for the Order- Disorder Transition. Physical Review B, 46, 3236-3246. http://dx.doi.org/10.1103/PhysRevB.46.3236
[4] 张临超, 陈春华. 锂离子电池电极材料选择[J]. 化学进展, 2011, 23(Z1): 275-283.
[5] Thackeray, M.M., Johnson, P.J., de Picciotto, L.A., Bruce, P.G. and Goodenough, J.B. (1984) Electrochemical Extraction of Lithium from LiMn2O4. Materials Research Bulletin, 19, 179-187.
[6] Tang, X.-C., Li, L.-Q. and Huang, B.-Y. (2006) Phenomenon of Enhanced Diffusion of Lithium-Ion in LiMn2O4 Induced by Electrochemical Cycling. Solid State Ionics, 177, 687-690.
[7] Miure, K., Yamada, A. and Tanaka, M. (1996) Electric States of Spinel LixMn2O4 as a Cathode of the Rechargeable Battery. Electochimica Acta, 41, 249-256. http://dx.doi.org/10.1016/0013-4686(95)00304-W
[8] Gao, Y. and Dahn, J.R. (1996) Synthesis and Characterization of Li1 + xMn2 − x O4 for Li-Ion Battery Applications. Journal of the Electrochemical Society, 143, 100-114. http://dx.doi.org/10.1149/1.1836393
[9] Yoshio, M., Tanaka, H., Tominaya, K. and Noyuchi, H. (1992) Synthesis of LiCoO2 from Cobalt—Organic Acid Complexes and Its Electrode Behaviour in a Lithium Secondary Battery. Journal of Power Sources, 40, 347-353. http://dx.doi.org/10.1016/0378-7753(92)80023-5
[10] Rougier, A., Gravereau, P. and Delmas, C. (1996) Optimization of the Composition of the Li1 − zNi1 + z O2 Electrode Materials: Structural, Magnetic, and Electrochemical Studies. Journal of the Electrochemical Society, 143, 1168-1175. http://dx.doi.org/10.1149/1.1836614
[11] 朱彦荣, 夏继才, 伊廷锋, 岳彩波, 诸荣孙, 贾志刚. 温度对LiMn2O4正极材料嵌锂动力学的影响[J]. 电池工业, 2010, 15(4): 202-204.
[12] 纪登辉. 尖晶石铁氧体的电离度及其对离子分布和磁性的影响[D]: [博士学位论文]. 河北: 河北师范大学, 2013.