台风“布拉万”路径和强度的诊断分析
Diagnostic Analysis of the Path and Intensity of Typhoon “Bolaven”
DOI: 10.12677/CCRL.2016.53023, PDF, HTML, XML, 下载: 1,806  浏览: 2,586 
作者: 马 芳:曲阜市气象局,山东 济宁
关键词: 台风“布拉万”移动路径台风强度Typhoon “Bolaven” Moving Path Typhoon Intensity
摘要: 利用日本气象厅的热带气旋最优路径数据和多种卫星再分析资料,本文对1215号台风“布拉万”移动路径和强度变化的主要影响因素进行了天气学诊断分析。在台风生命史内,“布拉万”呈反气旋式移动,其方向与500 hPa流场的引导气流方向基本一致,是副热带高压、西风槽及双台风共同作用的结果。在“布拉万”发展初期,高海温、弱的水平风垂直切变以及对流层中低层强烈的辐合上升运动使其逐渐达到了生命史中最大强度。随后,低海温和较强的垂直切变使台风结构遭到破坏,低层台风中心的辐合上升运动减弱。同时,“布拉万”移入西风槽,强冷空气入侵,台风逐渐减弱衰退。
Abstract: Best-track data from the Japan Meteorological Agency and reanalysis datasets from the multi sa-tellite altimeters are analyzed during the lifetime of the No. 1215 typhoon “Bolaven”, using the synoptic analysis. Main influence factors for the variations of typhoon’s path and intensity are diagnosed in this paper. During the whole lifetime, typhoon “Bolaven” gradually changes its direction. This movement is mainly guided by the subtropical high, westerlies as well as the typhoon “Tembin”. The strengthening of typhoon “Bolaven” is consistent with the higher sea surface temperature and lower vertical wind shear. Besides, typhoon’s convergence and upward motions in the middle and lower troposphere also can promote this enhancement. As a result, “Bolaven” reaches its maximum intensity. Subsequently, due to the decrease of the sea surface temperature and the increase of the vertical wind shear, typhoon’s structure is destroyed. Meanwhile, the corresponding convergence and upward motions are weakened at low levels. Coupled with the strong cold air advection by the westerly trough, all these adverse factors lead to the “Bolaven” weakened.
文章引用:马芳. 台风“布拉万”路径和强度的诊断分析[J]. 气候变化研究快报, 2016, 5(3): 182-194. http://dx.doi.org/10.12677/CCRL.2016.53023

参考文献

[1] 陈联寿, 丁一汇. 西太平洋台风概论[M]. 北京: 科学出版社, 1979: 491.
[2] 包澄澜. 热带天气学[M]. 北京: 科学出版社, 1980: 269.
[3] Holland, G.J. (1983) Tropical Cyclone Motion: Environmental Interaction plus a Beta Effect. Journal of the Atmospheric Sciences, 40, 328-342.
http://dx.doi.org/10.1175/1520-0469(1983)040<0328:TCMEIP>2.0.CO;2
[4] 黄莉莉, 等. 两个移速快、强度强、路径相似的台风过程分析[J]. 广东气象, 2010, 32(5): 5-7.
[5] Wu, C.C., Chen, S.G., Chen, J.H., Chou, K.H. and Lin, P.H. (2008) Interaction of Typhoon Shanshan (2006) with the Midlatitude Trough from Both Adjoint-Derived Sensitivity Steering Vector and Potential Vorticity Perspectives. Monthly Weather Review, 137, 852-862.
http://dx.doi.org/10.1175/2008MWR2585.1
[6] 朱乾根, 林锦瑞, 寿邵文, 等. 天气学原理和方法[M]. 北京: 气象出版社, 1992: 649.
[7] Kidder, S.Q., Goldberg, M.D., Zehr, R.M., et al. (2000) Satellite Analysis of Tropical Cyclones Using the Advanced Microwave Sounding Unit (AMSU). Bulletin of the American Meteorological Society, 81, 1241-1259.
http://dx.doi.org/10.1175/1520-0477(2000)081<1241:SAOTCU>2.3.CO;2
[8] Gallina, G.M. and Velden, C.S. (2002) Environmental Vertical Wind Shear and Tropical Cyclone Intensity Change Utilizing Enhanced Satellite Derived Wind Information. Atlantic, 58, 12.
[9] 河惠卿, 王振会, 金正润. 不对称环流对台风强度变化的影响[J]. 热带气象学报, 2008, 24(3): 249-253.
[10] 袁小超, 谭季青. “达维”台风强度突变的诊断分析[J]. 科技通报, 2011, 27(4): 389-502.
[11] 李英, 陈联寿, 雷小途. 高空槽对9711号台风变性加强影响的数值研究[J]. 气象学报, 2006, 64(5): 552-562.
[12] Gary, W.M. (1968) Global View of the Origin of Tropical Disturbances and Storms. Monthly Weather Review, 96, 669-700.
http://dx.doi.org/10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2
[13] 丁一汇, 刘月贞. 7507号台风中水汽收支的研究[J]. 海洋学报(中文版), 1986, 8(3): 291-301.
[14] 谭锐志, 梁必骐. 登陆台风衰减与变性过程的对比研究[J]. 中山大学学报(自然科学版), 1989, 28(4): 15-21.
[15] 朱智慧, 黄宁立, 问晓梅. 双台风“天秤”和“布拉万”相互作用诊断分析[J]. 气象科技, 2015, 43(3): 506-511.
[16] 徐杰, 过霁冰, 黄宁立. 1215号台风“布拉万”的强度和路径变化诊断分析[J]. 自然灾害学报, 2013, 22(6): 203-209.