固定翼无人机的滑模控制方法研究
Study on Sliding Mode Control Method of the Fixed-Wing Unmanned Aerial Vehicle
DOI: 10.12677/DSC.2016.53013, PDF, HTML, XML, 下载: 2,204  浏览: 6,097 
作者: 史兴隆, 王立峰:北方工业大学电气与控制工程学院,北京
关键词: 固定翼无人机滑模控制轨迹跟踪建模仿真Fixed-Wing Unmanned Aerial Vehicle Sliding Mode Control Trajectory Tracking Modeling and Simulation
摘要: 在研究固定翼无人机的轨迹跟踪控制问题时,为提高跟踪系统鲁棒性,设计了一款滑模控制器。在建立固定翼无人机数学模型后,对固定翼轨迹跟踪控制的模型进行分析. 并将滑模变结构控制应用到固定翼无人机的轨迹跟踪控制中,通过Lyapunov理论证明系统的稳定性,最后在MATLAB环境中,通过建模仿真数值试验验证方法可行性。
Abstract: Aiming at improving the robustness of the tracking system, an adaptive sliding mode controller on the fixed wing unmanned aerial vehicle (UAV) trajectory tracking control problem is suggested. After introducing the establishment of the fixed-wing unmanned aerial vehicle mathematical model, the trajectory tracking control model is analyzed. The sliding mode control technology is applied into UAV trajectory tracking control model, and the robustness of the system is improved through Lyapunov theory, Finally, it's feasibility that is tested through modeling and simulation experiments in MATLAB.
文章引用:史兴隆, 王立峰. 固定翼无人机的滑模控制方法研究[J]. 动力系统与控制, 2016, 5(3): 114-123. http://dx.doi.org/10.12677/DSC.2016.53013

参考文献

[1] 章志祥,王立峰,贺丛奎. 基于自适应动态逆的四旋翼机器人控制设计[J]. 动力系统与控制, 2014, 3(1): 1-7.
[2] Wang, L.F., Zhang, Z.X. and He, C.K. (2014) Adaptive Dynamic Inversion Controller for Quad Rotor Aerial Robot. Journal of Control Engi-neering and Technology (JCET), 4, 147-152.
[3] Das, A., Subbarao, K. and Lewis, F. (2009) Dynamic Inversion with Ze-ro-Dynamics Stabilisation for Quadrotor Control. Control Theory Applications, IET, 3, 303-314.
http://dx.doi.org/10.1049/iet-cta:20080002
[4] Snnoeveldt, L., van Oort, E.R., Chu, Q.P. and Mulder, J.A. (2009) Nonlinear Adaptive Trajectory Control Applied to an F-16 Model. Journal of Guidance Control and Dynamics, 32, 25-39.
[5] Parada, P., Espinoza, T. and Dzul, A. (2014) Nonlinear Observers Applied to Fixed-Wing UAVs. International Conference on Unmanned Air-craft System, Orlando, FL, 27-30 May 2014, 780-790.
http://dx.doi.org/10.1109/icuas.2014.6842323
[6] Espinoza, T., Dzul, A., Lozano, R. and Parada, P. (2013) Backstep-ping-Sliding Mode Controllers Applied to a Fixed wing UAV. International Conference on Unmanned Aircraft System, Atlanta, GA, 28-31 May 2013, 95-104.
http://dx.doi.org/10.1109/icuas.2013.6564678
[7] Wang, L.F., He, C.K. and Zhu, P. (2014) Adaptive Sliding Mode Control for Quadrotor Aerial Robot with Ι Type Configuration. International Journal of Automation and Control Engineering (IJACE), 3, 20-26.
http://dx.doi.org/10.14355/ijace.2014.0301.03
[8] Zhu, Z., Xia, Y.Q. and Fu, M.Y. (2011) Adaptive Sliding Mode Control for Attitude Stabilization with Actuator Saturation. IEEE Transactions on Industrial Electronics, 58, 4898-4907.
http://dx.doi.org/10.1109/TIE.2011.2107719
[9] Sun, Y., Zhang, W.-G. and Zhang, M. (2011) Adaptive Sliding Mode High Maneuvers Flight Control Based on Backstepping Procedure. Control and Decision, 26, 1-5.
[10] Paw, Y.C. (2009) Synthesis and Validation of Flight Control for UAV. PhD Dissertation, University of Minnesota, Minneapolis and St. Paul.
[11] Low, C.B. (2010) A Trajectory Tracking Control Design for Fixed-Wing Unmanned Aerial Vehicles. IEEE International Conference on Control Ap-plications Part of 2010 IEEE Multi-Conference on Systems and Control, Yokohama, 8-10 September 2010, 2118-2123.
[12] 刘金坤. 滑模变结构控制MATLAB仿真[M]. 北京: 清华大学出版社, 2005.
[13] 沈宏良, 刘昶. 飞机平衡状态的优化计算方法[J]. 飞行力学, 2001, 19(4): 15-18.
[14] Jaroslav, R.N. and Zelinka, I. (2008) Evolutionary Algorithms in Aircraft Trim Optimization. 19th International Conference on Database and Expert Systems Application, Zlin, 524-530.