浅析单词阅读的认知神经机制——基于神经再利用假说和交互作用观的比较
The Cognitive and Neural Mechanisms of Reading: Comparing the Neuronal Recycling Hypothesis and the Interactive Account
DOI: 10.12677/AP.2016.67103, PDF, HTML, XML, 下载: 1,614  浏览: 4,636 
作者: 吴 坤, 徐昕然, 邱怡丹:华南师范大学心理学院,广东 广州
关键词: 单词阅读字词识别神经再利用假说交互作用观Words Reading Recognition of Words The Neuronal Recycling Hypothesis The Interactive Account
摘要: 语言心理学家对单词阅读的几个基本问题的探究乐此不疲,这些问题包括但不限于:1) 阅读过程中单词是如何在识别之后进一步达到语义的通达的?2) 人脑中是否存在一个特异于字词加工与识别的脑区?3) 一个单词的字形、语音、语义三个加工在阅读中是一种怎样的关系和程序?围绕这些问题,心理学家展开了一系列实验研究。本文基于正常被试及失语症被试的一系列行为实验研究和脑成像研究证据,对当前解释字词识别过程的神经再利用假说和交互作用观进行比较,并分析两者间存在的共识、冲突及原因。在此基础上,进一步阐述这两个理论和一篇元分析研究在单词阅读的不同阶段所具有的研究意义及局限性。
Abstract: The language psychologists are fond of exploring the mechanisms of reading: how is the semantic information accessed after a word is recognized? Is there a brain region specialized for processing and recognizing visual words? Further, how does our brain process the phonological information, the visual form information and the semantic information of a word delicately? To answer these questions, psychologists proposed distinct hypotheses based on a set of psychological researches and neural imaging studies. This article makes a comparison between the Neuronal Recycling Hy-pothesis and the Interactive Account towards words reading, and explains the importance and li-mitation, combined with a meta-analysis research.
文章引用:吴坤, 徐昕然, 邱怡丹 (2016). 浅析单词阅读的认知神经机制——基于神经再利用假说和交互作用观的比较. 心理学进展, 6(7), 790-797. http://dx.doi.org/10.12677/AP.2016.67103

参考文献

[1] Baker, C. I., Liu, J., Wald, L. L., & Kanwisher, N. (2007). Visual Word Processing and Experiential Origins of Functional Selectivity in Human Extrastriate Cortex. Proceedings of the National Academy of Sciences of the United States of America, 104, 9087-9092.
http://dx.doi.org/10.1073/pnas.0703300104
[2] Cattinelli, I. (2013). Reading the Reading Brain: A New Meta-Analysis of Functional Imaging Data on Reading. Journal of Neurolinguistics, 26, 214-238.
http://dx.doi.org/10.1016/j.jneuroling.2012.08.001
[3] Changizi, M. A., Zhang, Q., Ye, H., & Shimojo, S. (2006). The Structures of Letters and Symbols throughout Human History Are Selected to Match Those Found in Objects in Natural Scenes. American Naturalist, 167, E117-E139.
http://dx.doi.org/10.1086/502806
[4] Cohen, L., Dehaene, S., Naccache, L., Lehéricy, S., Dehaene-Lambertz, G., Hénaff, M. A., & Michel, F. (2000). The Visual Word Form Area: Spatial and Temporal Characterization of an Initial Stage of Reading in Normal Subjects and Posterior Split-Brain Patients. Brain, 123, 291-307.
http://dx.doi.org/10.1093/brain/123.2.291
[5] Dehaene, S. (2001). Cerebral Mechanisms of Word Masking and Unconscious Repetition Priming. Nature Neuroscience, 4, 752-758.
http://dx.doi.org/10.1038/89551
[6] Dehaene, S. (2002). The Visual Word Form Area: A Prelexical Representation of Visual Words in the Fusiform Gyrus. Neuroreport, 13, 321-325.
http://dx.doi.org/10.1097/00001756-200203040-00015
[7] Dehaene, S., & Cohen, L. (2011). The Unique Role of Visual Word Form Area in Reading. Trends in Cognitive Sciences, 15, 254-262.
http://dx.doi.org/10.1016/j.tics.2011.04.003
[8] Harley, T. A. (2004). The Psychology of Language: From Data to Theory.
[9] Hashimoto, R., & Sakai, K. L. (2004). Learning Letters in Adulthood: Direct Visualization of Cortical Plas-ticity for Forming a New Link between Orthography and Phonology. Neuron, 42, 311-322.
http://dx.doi.org/10.1016/S0896-6273(04)00196-5
[10] Nobre, A. C. (1892). Word Recognition in the Human Inferior Temporal Lobe. Nature, 372, 260-263.
http://dx.doi.org/10.1038/372260a0
[11] Petersen, S. E. (1988). Positron Emission Tomographic Studies of the Cor-tical Anatomy of Single-Word Processing. Nature, 331, 585-589.
http://dx.doi.org/10.1038/331585a0
[12] Price, C. J., & Devlin, J. T. (2003). The Myth of the Visual Word Form Area. Neuroimage, 19, 473-481.
http://dx.doi.org/10.1016/S1053-8119(03)00084-3
[13] Price, C. J., & Devlin, J. T. (2011). The Interactive Account of Ventral Occipitotemporal Contributions to Reading. Trends in cognitive sciences, 15, 246-253.
http://dx.doi.org/10.1016/j.tics.2011.04.001
[14] Price, C. J., McCrory, E., Noppeney, U., Mechelli, A., Moore, C. J., Biggio, N., & Devlin, J. T. (2006). How Reading Differs from Object Naming at the Neuronal Level. Neuroimage, 29, 643-648.
http://dx.doi.org/10.1016/j.neuroimage.2005.07.044
[15] Song, Y. Y., Hu, S., Li, X., Li, W., & Liu, J. (2010). The Role of Top-Down Task Context in Learning to Perceive Objects. Journal of Neuroscience, 30, 9869-9876.
http://dx.doi.org/10.1523/JNEUROSCI.0140-10.2010
[16] Szwed, M., Cohen, L., Qiao, E., & Dehaene, S. (2009). The Role of Invariant Line Junctions in Object and Visual Word Recognition. Vision Research, 49, 718-725.
http://dx.doi.org/10.1016/j.visres.2009.01.003
[17] Szwed, M., Dehaene, S., Kleinschmidt, A., Eger, E., Valabrègue, R., Amadon, A., & Cohen, L. (2011). Specialization for Written Words over Objects in the Visual Cortex. Neuroimage, 56, 330-344.
http://dx.doi.org/10.1016/j.neuroimage.2011.01.073
[18] Yoncheva, Y. N., Blau, V. C., Maurer, U., & McCandliss, B. D. (2010). Attentional Focus during Learning Impacts N170 ERP Responses to an Artificial Script. Developmental Neuropsychology, 35, 423-445.
http://dx.doi.org/10.1080/87565641.2010.480918