超声波燃气表内部结构设计的气体流动仿真研究
Simulation Study of Gas Flowing of Internal Structure of Ultrasonic Gas Meter
DOI: 10.12677/MOS.2016.53009, PDF, HTML, XML, 下载: 1,812  浏览: 4,391  国家科技经费支持
作者: 翟义然:成都千嘉科技有限公司,四川 成都;四川大学,四川 成都;赵勇, 刘义:成都千嘉科技有限公司,四川 成都;胡小川, 张彬:四川大学,四川 成都
关键词: 超声波燃气表气体流速CFX仿真Ultrasonic Gas Meter Gas Velocity CFX Simulation
摘要: 利用流体动力学仿真软件CFX对超声波燃气表腔体结构的参考设计结构(SX结构)和新设计结构(QJ结构)进行仿真研究和分析。在不同的流量点上分别仿真获得两种结构内的气体流动特性,包括两种结构的整个腔体内、腔体的XY轴向截面上及XY轴向截面中超声波测量部分的气体流速分布。对仿真结果分析显示,两种设计结构内气体流动性能非常近似。进一步分析发现,由于受到实际产品需求的影响,新改进的QJ结构比SX结构气体流速分布性能略差一些。另外,研究结果还显示与整个腔体气体流动或整个XY轴向截面上气体流动相比,超声波测量部分截面内气体流动虽然更快,但相对更均匀和稳定,有利于超声波气体流速的准确测量。
Abstract: Gas fluid dynamics of both an originally internal structure (SX structure) and a new design (QJ structure) of ultrasonic gas meter are simulated by CFX of ANSYS. Results of gas flowing velocity at typical flow points are calculated and analyzed. Gas velocity of the whole inside, the XY axis cross plane and the center part of XY axis cross plane where ultrasonic wave passes through of both the two structures is obtained. The simulation results reveal almost the same performance of gas flowing in both the SX structure and the QJ structure. Further analysis shows that comparably worse flowing performance is obtained by the QJ structure than that obtained by SX structure for requirements of real product design. Otherwise, gas fluid of the key part where ultrasonic wave passes through is in high speed; however it is more uniform and more stable than that of the whole inside or that of the XY axis cross plane, which is advantageous to accurate measurement of gas flowing velocity.
文章引用:翟义然, 赵勇, 胡小川, 刘义, 张彬. 超声波燃气表内部结构设计的气体流动仿真研究[J]. 建模与仿真, 2016, 5(3): 67-72. http://dx.doi.org/10.12677/MOS.2016.53009

参考文献

[1] Lynnworth, L.C. and Liu, Y. (2006) Ultrasonic Flowmeters: Half-Century Progress Report, 1955-2005. Ultrasonics, 44, 1371-1378.
http://dx.doi.org/10.1016/j.ultras.2006.05.046
[2] 于洋, 宗光华, 丁凤林. 超声波流量测量中流速计算方法的对比[J]. 北京航空航天大学学报, 2013(1): 37-41.
[3] Bernardo, S., Mori, M., Peres, A.P., et al. (2006) 3-D Computational Fluid Dynamics for Gas and Gas-Particle Flows in a Cyclone with Different Inlet Section Angles. Powder Technology, 162, 190-200.
http://dx.doi.org/10.1016/j.powtec.2005.11.007
[4] Jia, H.Y., Kong, J.Y., Zhou, S.Z., et al. (2013) Study on the Method for CFX Numerical Simulation of Flow Field in Screw Conveyer of Sand Fracturing Blender. Applied Mechanics and Materials, 318, 207-211.
http://dx.doi.org/10.4028/www.scientific.net/AMM.318.207
[5] 董全林, 孟凡念, 王鹏飞, 王岩. 高效风机的设计及CFX仿真分析[J]. 风机技术, 2014(S1): 54-60.
[6] 李丽丹, 李声. 基于CFX和Workbench的数值仿真技术[J]. 中国测试, 2010, 36(5): 79-83.
[7] 谢龙汉, 赵新宇, 张炯明. ANSYS CFX流体分析及仿真[M]. 北京: 电子工业出版社, 2012.