长链非编码RNA的研究进展
Research Progress of Long Non-Coding RNA
DOI: 10.12677/IJPN.2016.53009, PDF, HTML, XML, 下载: 2,335  浏览: 5,826  国家自然科学基金支持
作者: 蔡雅莉:福建中医药大学,福建 福州;吴成翰*:福建省第二人民医院神经科,福建 福州
关键词: 长链非编码RNALncRNA研究进展Long Non-Coding RNA LncRNA Research Progress
摘要: 在过去的十几年,随着人类基因组计划的完成,高通量基因组技术,如芯片和新一代测序技术的发展,人们对lncRNA (Long non-coding RNA简称lncRNA)的研究兴趣急剧上升,成为研究热点。特别是遗传“中心法则”确立和mRNA的研究,既往人们一直认为RNA是DNA与蛋白质之间遗传信息传递的中介,但随着人类基因组计划研究的进展,发现在组成人类基因组的30亿个碱基对中,编码蛋白质的核酸序列大约仅占人类基因组序列的1.5%,其他98.5%为非蛋白编码序列。这些不编码蛋白质的基因序列曾一度被认为是基因组进化过程中堆积的无用的“垃圾序列”,随着研究的深入,越来越多证据表明它们可能具有更重要的生物学功能。2012年发布的ENCODE研究发现非蛋白编码序列中占绝大多数为长度大于200个碱基的非编码RNA (Long non-coding RNA简称lncRNA),这些lncRNA通过不同的作用机制,在不同的水平对基因表达进行调控,与人类的生长发育、疾病的发生密切相关。
Abstract: In the past ten years, with the completion of the human genome project, high-throughput genomic technologies, such as chip and a new generation of sequencing technology development, people’s research interest of lncRNA (hereinafter referred to as the long ncRNA lncRNA) has risen sharply and become research hotspot. Especially for the research to establish the genetic “central dogma” and mRNA, people always think RNA is the genetic information transfer intermediary between DNA and protein, but with the progress of human genome project, it’s found in the composition of the human genome 30 million base pairs, nucleic acid sequences encoding proteins account for only about 1.5% of the human genome sequence, and the other is 98.5 percent non-protein coding sequence. This protein coding gene sequence was once considered to be the genome evolution in the process of accumulation of useless junk sequences. With the in-depth research, more and more evidence has shown that they may have more important biological functions. 2012 released encode found that non-protein coding sequence accounted for the vast majority of length, greater than 200 nucleotides non-coding RNA (hereinafter referred to as the long ncRNA lncRNA). These lncRNAs, through different mechanisms of action and in different levels of gene expression regulation, are closely related to human growth and development, disease occurrence.
文章引用:蔡雅莉, 吴成翰. 长链非编码RNA的研究进展[J]. 国际神经精神科学杂志, 2016, 5(3): 54-58. http://dx.doi.org/10.12677/IJPN.2016.53009

参考文献

[1] Spizzo, R., Almeida, M.I., Colombatti, A. and Calin, G.A. (2012) Long Non-Coding RNAs and Cancer: A New Frontier of Translational Research? Oncogene, 31, 4577-4587.
http://dx.doi.org/10.1038/onc.2011.621
[2] Ponting, C.P., Oliver, P.L. and Reik, W. (2009) Evolution and Functions of Long Non-Coding RNAs. Cell, 136, 629- 641.
http://dx.doi.org/10.1016/j.cell.2009.02.006
[3] Mercer, T.R., Dinger, M.E. and Mattick, J.S. (2009) Long Non-Coding RNAs: Insights into Functions. Nature Reviews Genetics, 10, 155-l59.
http://dx.doi.org/10.1038/nrg2521
[4] Bird, A. (2007) Perceptions of Epigenetics. Nature, 447, 396-398.
http://dx.doi.org/10.1038/nature05913
[5] Qureshi, I.A., Mattick, J.S. and Mehler, M.F. (2010) Long Non-Coding RNAs in Nervous System Function and Disease. Brain Research, 1338, 20-35.
http://dx.doi.org/10.1016/j.brainres.2010.03.110
[6] 徐宏, 梁尚栋. 长非编码RNA与其他表观遗传学的相互调控与神经系统疾病[J]. 中国药理学通报, 2012, 28(10): 1348-1351.
[7] 钱晖. 长链非编码RNAs及其在临床诊断中的应用[J]. 临床检验杂志, 2012, 30(10): 826-830.
[8] Cai, X. and Cullen, B.R. (2007) The Imprinted H19 Non-Coding RNA Is a Primary MicroRNA Precursor. RNA, 13, 313-316.
http://dx.doi.org/10.1261/rna.351707
[9] Beltran, M., Puig, I., Pena, C., et al. (2008) A Natural Antisense Transcript Regulates Zeb2/Sip1 Gene Expression during Snail1-Induced Epithelial-Mesenchymal Transition. Genes & Development, 22, 756-769.
http://dx.doi.org/10.1101/gad.455708
[10] Hadjiargyrou, M. and Delihas, N. (2013) The Intertwining of Transposable Elements and Non-Coding RNAs. International Journal of Molecular Sciences, 14, 13307-13328.
[11] Wang, K.C. and Chang, H.Y. (2011) Molecular Mechanisms of Long Non-Coding RNAs. Molecular Cell, 43, 904- 914.
http://dx.doi.org/10.1016/j.molcel.2011.08.018
[12] 唐珍, 王含彦, 易芳, 郭冬梅, 罗蓉. 长非编码RNA以及与疾病发生的研究进展[J]. 西南师范大学学报: 自然科学版, 2015, 40(1): 51-55.
[13] Brannan, C.I., Dees, E.C., Lngram, R.S., et al. (1990) The Product of the H19 Gene May Function as an RNA. Molecular and Cellular Biology, 10, 28-36.
http://dx.doi.org/10.1128/MCB.10.1.28
[14] Cooper, M.J., Fischer, M., Komitowski, D., et al. (1996) Developmentally Imprinted Genes as Markers for Bladder Tumor Progression. Journal of Urology, 155, 2120-2127.
http://dx.doi.org/10.1016/S0022-5347(01)66120-2
[15] Gabory, A., Ripoche, M.A., Yoshimizu, T. and Dandolo, L. (2006) The H19 Gene: Regulation and Function of a Non-Coding RNA. Cytogenetic and Genome Research, 113, 188-193.
http://dx.doi.org/10.1159/000090831
[16] Yang, L., Lin, C., Jin, C., et al. (2013) LncRNA-Dependent Mechanisms of Androgen-Receptor Regu1ated Gene Activation Programs. Nature, 500, 598-602.
http://dx.doi.org/10.1038/nature12451
[17] Gutschner, T., Hammerle, M., Eissmann, M., et al. (2013) The Non-Coding RNA MALAT1 Is a Critical Regulator of the Metastasis Phenotype of Lung Cancer Cells. Cancer Research, 73, 1180-1189.
http://dx.doi.org/10.1158/0008-5472.CAN-12-2850
[18] Ren, H., Li, Y., Tang, Z., et al. (2009) Genomic Structure, Chromosomal Localization and Expression Profile of a Porcine Long Non-Coding RNA Isolated from Long SAGE Libraries. Animal Genet, 40, 499-508.
http://dx.doi.org/10.1111/j.1365-2052.2009.01868.x
[19] Driskell, J.D., Seto, A.G., Jones, L.P., et al. (2008) Rapid MicroRNA (miRNA) Detection and Classification via Surface-Enhanced Raman Spectroscopy (SERS). Biosensor Bioelectronics, 24, 923-931.
[20] 李业, 罗朝辉. 长链非编码RNA的生物学功能及在神经系统疾病中的作用[J]. 国际神经病学神经外科学杂志, 2013, 40(5): 485-488.