氘核与物质相互作用的能量损失特性计算与模拟
The Computing and Simulation of Energy Loss Performance for Deuteron in Different Target
DOI: 10.12677/APP.2016.68021, PDF, HTML, XML,  被引量 下载: 2,177  浏览: 6,633 
作者: 彭 猛*:兰州大学核科学与技术学院,甘肃 兰州;兰长林*:兰州大学核科学与技术学院,甘肃 兰州;北京应用物理与计算数学研究所,北京;叶 涛:北京应用物理与计算数学研究所,北京
关键词: 模板氘核阻止本领能量沉积Geant4Deuteron Transport Stopping Power Energy Deposition Geant4
摘要: 根据不同能量区间氘核与物质相互作用的电子阻止本领和核阻止本领公式,计算给出了100 MeV氘离子在不同靶物质中能量损失特性,利用蒙特卡罗程序Geant4模拟计算了上述能量区间的氘核在不同介质中的阻止本领与射程,与SRIM程序计算结果比较误差在2%以内。同时给出了氘核在相应靶材料中的能量沉积和Bragg峰,为氘核数据库的建立奠定基础。
Abstract: This paper calculated 100 MeV Deuteron energy loss characteristics in different target materials, according to the electron stopping power and nuclear stopping power theoretical formula of electronic particle interacting with target material. It also simulated the stopping power and range of Deuteron with same energy transporting in different target medium (Graphite, Aluminium, Iron is selected in this paper) by using the Monte Carlo software of Geant4. The results show a good agreement with SRIM simulation results and experimental data with 2% relative error. Geant4 results gave the energy deposition of Deuteron in different target and Bragg peak at the same time.
文章引用:彭猛, 兰长林, 叶涛. 氘核与物质相互作用的能量损失特性计算与模拟[J]. 应用物理, 2016, 6(8): 159-166. http://dx.doi.org/10.12677/APP.2016.68021

参考文献

[1] 姜少宁, 万发荣, 龙毅, 等. 氦、氘对纯铁辐照缺陷的影响[J]. 物理学报, 2013, 62(16): 313-319.
[2] 赵江涛. 利用强流氘离子注入及离子束分析方法研究氘在面向等离子体候选壁材料中的沉积行为[D]: [博士学位论文]. 兰州: 兰州大学, 2013.
[3] Peng, S.X., Zhu, F., Wang, Z., et al. (2016) The Deuteron Accelerator Preliminary Design for BISOL. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 376, 420-424. http://dx.doi.org/10.1016/j.nimb.2016.01.008
[4] James Ziegler-SRIM&TRIM. http://www.srim.org
[5] NIST: Introduction of ESTAR, PSTAR, and ASTAR. http://physics.nist.gov/PhysRefData/Star/Text/intro.html
[6] Geant4: A Toolkit for the Simulation of the Passage of Particles through Matter. http://www.geant4.org/
[7] Ziegler, J.F. and Biersack, J.P. (1985) The Stopping Range of Ions in Matter. Springer-Verlag, New York. http://dx.doi.org/10.1007/978-1-4615-8103-1_3
[8] Physics Reference Manual. http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/PhysicsReferenceManual/BackupVersions/V9.6/fo/PhysicsReferenceManual.pdf
[9] Boschini, M.J., Consolandi, C., Gervasi1, M., et al. (2010) Nuclear and Non-Ionizing Energy-Loss for Coulomb Scattered Particles from Low Energy up to Relativistic Regime in Space Radiation Environment. Proceedings of the 12th ICATPP Conference, Como, 7-8 October 2010.
[10] Ben-Hamu, D., Baer, A., Faldman, H., et al. (1997) Energy Loss of Fast Clusters through Matter. Physical Review A, 56, 4786. http://dx.doi.org/10.1103/PhysRevA.56.4786
[11] Geant4 User’s Guide for Toolkit Developers. http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/ForApplicationDeveloper/BackupVersions/V9.6/fo/BookForAppliDev.pdf
[12] Physics Reference Manual. http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/PhysicsReferenceManual/BackupVersions/V9.6/fo/PhysicsReferenceManual.pdf
[13] Shiomi-Tsuda, N., Sakamoto, N. and Ishiwari, R. (1994) Stopping Powers of Be, Al, Ti, V, Fe, Co, Ni, Cu, Zn, Mo, Rh, Ag, Sn, Ta, Pt and Au for 13 MeV Deuterons. Nuclear Instruments and Methods in Physics Research Section B, 93, 391-398. http://dx.doi.org/10.1016/0168-583X(94)95624-3
[14] 谢朝, 邹炼, 侯氢, 郑霞. 质子束治疗中非均匀组织的等效水厚度修正研究[J]. 物理学报, 2013, 62(6): 483-487.