芳烃类有机超导体的研究进展
Research Progress of Aromatic Superconductor
DOI: 10.12677/CMP.2016.53006, PDF, HTML, XML, 下载: 2,548  浏览: 9,097  国家自然科学基金支持
作者: 李圣文:北京计算科学研究中心,北京;闫循旺:北京计算科学研究中心,北京;安阳师范学院,物理与电气工程学院,河南 安阳;钟国华*:北京计算科学研究中心,北京;中国科学院深圳先进技术研究院,广东 深圳
关键词: 芳香烃分子晶体有机超导体超导电性Aromatic Hydrocarbon Molecular Crystal Organic Superconductor Superconductivity
摘要: 芳烃类超导材料是一类新型有机超导材料,它以芳香烃分子晶体为基础,在分子间隙中掺入碱金属、碱土金属或稀土金属原子后形成新材料,可实现超导现象。芳烃类材料具有种类多样、易于剪裁和修饰、元素构成简单等优点。实验发现在芳烃分子晶体中掺入不同种类或数目的金属原子、以及施加压力时系统表现出丰富奇妙的物理现象,已引起科研人员的高度关注。文中概述了该领域实验和理论研究方面的主要进展,分析和总结该领域目前存在的困难和突出问题;同时,结合研究结果和对一些问题的理解,对芳烃类低温与超导体研究的发展态势进行讨论和展望。
Abstract: Aromatic superconductors discovered recently is a new class of organic superconductor, which is synthesized by doping alkali metal, alkali earth metal or rare earth metal into the molecular crystal of aromatic hydrocarbon to achieve superconducting phenomenon. Comparing with inorganic superconductor, aromatic superconductor has many advantages such as the molecule diversity, easiness of chemical modification and being composed of simple light elements. It is experimentally found that the system exhibits rich and interesting physical phenomena when the aromatic molecular crystal is doped by different kinds or number of metal atoms and is compressed, which has attracted researchers’ great attention. In this paper, the main progresses of experiment and theoretical research in the aromatic superconductor field are firstly introduced. And then the main problems and difficulties at present study are summarized. Combined the reported study results with the understanding of some problems, finally, the research perspectives and trends of low temperature and superconductor of aromatic hydrocarbon are discussed.
文章引用:李圣文, 闫循旺, 钟国华. 芳烃类有机超导体的研究进展[J]. 凝聚态物理学进展, 2016, 5(3): 37-44. http://dx.doi.org/10.12677/CMP.2016.53006

参考文献

[1] Little, W.A. (1964) Possibility of Synthesizing an Organic Superconductor. Physical Review, 134, A1416. http://dx.doi.org/10.1103/physrev.134.a1416
[2] Jerome, D., Mazaud, A., Ribault, M. and Bechgaard, K. (1980) Superconductivity in a Synthetic Organic Conductor (TMTSF)2PF6. Journal De Physique Lettres, 41, 95-98. http://dx.doi.org/10.1051/jphyslet:0198000410409500
[3] Taniguchi, H., Miyashita, M., Uchiyama, K., Satoh, K., Môri, N., Okamoto, H., Miyagama, K., Kanoda, K., Hedo, M. and Uwatoko, Y. (2003) Superconductivity at 14.2 K in Layered Organics under Extreme Pressure. Journal of the Physical Society of Japan, 72, 468-471. http://dx.doi.org/10.1143/JPSJ.72.468
[4] Lee, I.J., Brown, S.E., Yu, W., Naughton, M.J. and Chaikin, P.M. (2005) Coexistence of Superconductivity and Antiferromagnetism Probed by Simultaneous Nuclear Magnetic Resonance and Electrical Transport in (TMTSF)2PF6 System. Physical Review Letters, 94, 197001. http://dx.doi.org/10.1103/PhysRevLett.94.197001
[5] Chaikin, P.M., Choi, M.Y. and Greene, R.L. (1983) Superconductivity and Metal-Insulator Transitions in (TMTSF)2X. Journal of Magnetism and Magnetic Materials, 31-34, 1268-1272.
[6] Hebard, A.F., Rosseinsky, M.J., Haddon, R.C., Murphy, D.W., Glarum, S.H., Palstra, T.T.M., Ramirez, A.P. and Kortan, A.R. (1991) Superconductivity at 18 K in Potassium-Doped C60. Nature, 350, 600-601. http://dx.doi.org/10.1038/350600a0
[7] Tanigaki, K., Ebbesen, T.W., Saito, S., Mizuki, J., Tsai, J.S., Kubo, Y. and Kuroshima, S. (1991) Superconductivity at 33 K in CsxRbyC60. Nature, 352, 222-223. http://dx.doi.org/10.1038/352222a0
[8] Palstra, T.T.M., Zhou, O., Iwasa, Y., Sulewski, P.E., Fleming, R.M. and Zegarski, B.R. Superconductivity at 40 K in Cesium Doped C60. Solid State Communications, 93, 327-330. http://dx.doi.org/10.1016/0038-1098(94)00787-X
[9] Kiefl, R.F., MacFarlane, W.A., Chow, K.H., Dunsiger, S., Duty, T.L., Johnston, T.M.S., Schneider, J.W., Sonier, J., Brard, L., Strongin, R.M., Fischer, J.E. and Smith III, A.B. (1993) Coherence peak and Superconducting Energy Gap in Rb3C60 Observed by Muon Spin Relaxation. Physical Review Letters, 70, 3987. http://dx.doi.org/10.1103/PhysRevLett.70.3987
[10] Gunnarsson, O. (1997) Superconductivity in Fullerides. Reviews of Modern Physics, 69, 575. http://dx.doi.org/10.1103/RevModPhys.69.575
[11] Ganin, A.Y., Takabayashi, Y., Jeglič, P., Arčon, D., Potočnik, A., Baker, P.J., Ohishi, Y., McDonald, M.T., Tzirakis, M.D., McLennan, A., Darling, G.R., Rosseinsky, M.J. and Prassides, K. (2010) Polymorphism Control of Superconductivity and Magnetism in Cs3C60 Close to the Mott Transition. Nature, 466, 221-225. http://dx.doi.org/10.1038/nature09120
[12] Emery, N., Hérold, C., d’Astuto, M., Garcia, V., Bellin, Ch., Marêché, J.F., Lagrange, P. and Loupias, G. (2005) Superconductivity of Bulk CaC6. Physical Review Letters, 95, 087003. http://dx.doi.org/10.1103/PhysRevLett.95.087003
[13] Mitsuhashi, R., Suzuki, Y., Yamanari, Y., Mitamura, H., Kambe, T., Ikeda, N., Okamoto, H., Fujiwara, A., Yamaji, M., Kawasaki, N., Maniwa, Y. and Kubozono, Y. (2010) Superconductivity in Alkali-Metal-Doped Picene. Nature, 464, 76-79. http://dx.doi.org/10.1038/nature08859
[14] Kubozono, Y., Mitamura, M., Lee, X., He, X., Yamanari, Y., Takahashi, Y., Suzuki, Y., Kaji, Y., Eguchi, R., Akaike, K., Kambe, T., Okamoto, H., Fujiwara, A., Kato, T., Kosugi, T. and Aoki, H. (2011) Metal-Intercalated Aromatic Hydrocarbons: A New Class of Carbon-Based Superconductors. Physical Chemistry Chemical Physics, 13, 16476-16493. http://dx.doi.org/10.1039/c1cp20961b
[15] Wang, X.F., Liu, R.H., Gui, Z., Xie, Y.L., Yan, Y.J., Ying, J.J., Luo, X.G. and Chen, X.H. (2011) Superconductivity at 5 K in Alkali-Metal-Doped Phenanthrene. Nat Communications, 2, 507-513. http://dx.doi.org/10.1038/ncomms1513
[16] Wang, X.F., Yan, Y.J., Gui, Z., Liu, R.H., Ying, J.J., Luo, X.G. and Chen, X.H. (2011) Superconductivity in A1.5 Phenanthrene (A = Sr, Ba). Physical Review B, 84, 214523. http://dx.doi.org/10.1103/PhysRevB.84.214523
[17] Wang, X.F., Luo, X.G., Ying, J.J., Xiang, Z.J., Zhang, S.L., Zhang, R.R., Zhang, Y.H., Yan, Y.J., Wang, A.F., Cheng, P., Ye, G.J. and Chen, X.H. (2012) Enhanced Superconductivity by Rare-Earth Metal Doping in Phenanthrene. Journal of Physics: Condensed Matter, 24, 345701. http://dx.doi.org/10.1088/0953-8984/24/34/345701
[18] Xue, M.Q., Cao, T.B., Wang, D.M., Wu, Y., Yang, H.X., Dong, X.L., He, J.B., Li, F.W. and Chen, G.F. (2012) Superconductivity above 30 K in Alkali-Metal Doped Hydrocarbon. Scientific Reports, 2, 389-392. http://dx.doi.org/10.1038/srep00389
[19] Artioli, G.A., Hammerath, F., Mozzati, M.C., Carretta, P., Corama, F., Mannucci, B., Magadonna, S. and Malavasi, L. (2015) Superconductivity in Sm-Doped [n]Phenacenes (n = 3, 4, 5). Chemical Communications, 51, 1092-1095. http://dx.doi.org/10.1039/C4CC07879A
[20] Mahns, B., Roth, F. and Knupfer, M. (2012) Absence of Photoemission from the Fermi Level in Potassium Intercalated Picene and Coronene Films: Structure, Polaron, or Correlation Physics? The Journal of Chemical Physics, 136, 134503. http://dx.doi.org/10.1063/1.3699188
[21] Caputo, M., Di Santo, G., Parisse, P., Petaccia, L., Floreano, L., Verdini, A., Panighel, M., Struzzi, C., Taleatu, B., Lal, C. and Goldoni, A. (2012) Experimental Study of Pristine and Alkali Metal Doped Picene Layers: Confirmation of the Insulating Phase in Multilayer Doped Compounds. The Journal of Physical Chemistry C, 116, 19902-19908. http://dx.doi.org/10.1021/jp306640z
[22] Heguri, S., Phan, Q.T.N., Tanabe, Y. and Tanigaki, K. (2014) Thermodynamics and Existing Phase of Ba-Phenan- threne. Physical Review B, 90, 134519. http://dx.doi.org/10.1103/PhysRevB.90.134519
[23] Heguri, S., Kobayashi, M. and Tanigaki, K. (2015) Questioning the Existence of Superconducting Potassium Doped Phases for Aromatic Hydrocarbons. Physical Review B, 92, 014502. http://dx.doi.org/10.1103/PhysRevB.92.014502
[24] Kambe, T., He, X., Takahashi, Y., Yamanari, Y., Teranishi, K., Mitamura, H., Shibasaki, S., Tomita, K., Eguchi, R., Goto, H., Takabayashi, Y., Kato, T., Fujiwara, A., Kariyado, T., Aoki, H. and Kubozono, Y. (2012) Synthesis and Physical Properties of Metal-Doped Picene Solids. Physical Review B, 86, 214507. http://dx.doi.org/10.1103/PhysRevB.86.214507
[25] Teranishi, K., He, X., Sakai, Y., Izumi, M., Goto, H., Eguchi, R., Takabayashi, Y., Kambe, T. and Kubozono, Y. (2013) Observation of Zero Resistivity in K-Doped Picene. Physical Review B, 87, 060505(R). http://dx.doi.org/10.1103/PhysRevB.87.060505
[26] Okazaki, H., Jabuchi, T., Wakita, T., Kato, T., Muraoka, Y. and Yokoya, T. (2013) Evidence for Metallic States in Potassium-Intercalated Picene Film on Graphite. Physical Review B, 88, 245414. http://dx.doi.org/10.1103/PhysRevB.88.245414
[27] Huang, Q.W., Zhong, G.H., Zhang, J., Zhao, X.M., Zhang, C., Lin, H.Q. and Chen, X.J. (2014) Constraint on the Potassium Content for the Superconductivity of Potassium-Intercalated Phenanthrene. The Journal of Chemical Physics, 140, 114301. http://dx.doi.org/10.1063/1.4868437
[28] Kosugi, T., Miyake, T., Ishibashi, S., Arita, R. and Aoki, H. (2009) First-Principles Electronic Structure of Solid Picene. Journal of the Physical Society of Japan, 78, 113704. http://dx.doi.org/10.1143/JPSJ.78.113704
[29] De Andres, P.L., Guijarro, A. and Verges, J.A. (2011) Crystal Structure and Electronic States of Tripotassium Picene. Physical Review B, 83, 245113. http://dx.doi.org/10.1103/PhysRevB.83.245113
[30] De Andres, P.L., Guijarro, A. and Verges, J.A. (2011) Ab Initio Electronic and Geometrical Structures of Tripo- tassium-Intercalated Phenanthrene. Physical Review B, 84, 144501. http://dx.doi.org/10.1103/PhysRevB.84.144501
[31] Kosugi, T., Miyake, T., Ishibashi, S., Arita, R. and Aoki, H. (2011) First-Principles Structural Optimization and Electronic Structure of the Superconductor Picene for Various Potassium Doping Levels. Physical Review B, 84, 214506. http://dx.doi.org/10.1103/PhysRevB.84.214506
[32] Naghavi, S.S., Fabrizio, M., Qin, T. and Tosatti, E. (2013) Electron-Doped Organics: Charge-Disproportionate Insulators and Hubbard-Fröhlich Metals. Physical Review B, 88, 115106. http://dx.doi.org/10.1103/PhysRevB.88.115106
[33] Yan, X.W., Huang, Z. and Lin, H.Q. (2013) Van der Waals Density Functional Study of the Structural and Electronic Properties of La-Doped Phenanthrene. The Journal of Chemical Physics, 139, 204709. http://dx.doi.org/10.1063/1.4832699
[34] Yan, X.W., Huang, Z.B. and Lin, H.Q. (2014) Ba2phenanthrene Is the Main Component in the Ba-Doped Phenanthrene Superconductor. The Journal of Chemical Physics, 141, 224501. http://dx.doi.org/10.1063/1.4902911
[35] Huang, Z.B., Zhang, C. and Lin, H.Q. (2012) Magnetic Instability and Pair Binding in Aromatic Hydrocarbon Superconductors. Scientific Reports, 2, 922. http://dx.doi.org/10.1038/srep00922
[36] Kim, M., Min, B.I., Lee, G., Kwon, H.J., Rhee, Y.M. and Shim, J.H. (2011) Density Functional Calculations of Electronic Structure and Magnetic Properties of the Hydrocarbon K3picene Superconductor near the Metal-Insulator Transition. Physical Review B, 83, 214510. http://dx.doi.org/10.1103/PhysRevB.83.214510
[37] Zhong, G.H., Zhang, C., Wu, G.F., Huang, Z.B., Chen, X.J. and Lin, H.Q. (2013) First-Principles Investigations on the Magnetic Property in Tripotassium Doped Picene. Journal of Applied Physics, 113, 17E131. http://dx.doi.org/10.1063/1.4795849
[38] Giovannetti, G. and Capone, M. (2011) Electronic Correlation Effects in Superconducting Picene from Ab Initio Calculations. Physical Review B, 83, 134508. http://dx.doi.org/10.1103/PhysRevB.83.134508
[39] Zhong, G.H., Huang, Z.B. and Lin, H.Q. (2014) Antiferromagnetism in Potassium-Doped Polycyclic Aromatic Hydrocarbons. IEEE Transactions on Magnetics, 50, 1700103. http://dx.doi.org/10.1109/TMAG.2014.2329602
[40] Kato, T., Kambe, T. and Kubozono, Y. (2011) Strong Intramolecular Electron-Phonon Coupling in the Negatively Charged Aromatic Superconductor Picene. Physical Review Letters, 107, 077001. http://dx.doi.org/10.1103/PhysRevLett.107.077001
[41] Casula, M., Calandra, M., Profeta, G. and Mauri, F. (2011) Intercalant and Intermolecular Phonon Assisted Superconductivity in K-Doped Picene. Physical Review Letters, 107, 137006. http://dx.doi.org/10.1103/PhysRevLett.107.137006.
[42] Casula, M., Calandra, M., Profeta, G. and Mauri, F. (2012) Local and Nonlocal Electron-Phonon Couplings in K3picene and the Effect of Metallic Screening. Physical Review B, 86, 075445. http://dx.doi.org/10.1103/PhysRevB.86.075445
[43] Giovannetti, G., Casula, M., Werner, P., Mauri, F. and Capone, M. (2014) Downfolding Electron-Phonon Hamiltonians from Ab Initio Calculations: Application to K3picene. Physical Review B, 90, 115435. http://dx.doi.org/10.1103/PhysRevB.90.115435