微生物在饱和多孔介质中的迁移
Microbial Transport in Saturated Porous Media
DOI: 10.12677/JWRR.2016.54040, PDF, HTML, XML,  被引量 下载: 2,280  浏览: 11,422  国家自然科学基金支持
作者: 袁瑞强, 郭 威:山西大学环境与资源学院,山西 太原;王仕琴:中国科学院遗传所农业资源研究中心,河北 石家庄;王 鹏:江西师范大学鄱阳湖湿地与流域研究教育部重点实验室,江西 南昌
关键词: 微生物生物胶体迁移吸附解吸多孔介质地下水Micro-Organism Bio-Colloid Transport Sorption-Desorption Porous Media Groundwater
摘要: 微生物在多孔介质中的迁移是水文与水环境研究的热点问题。对该问题的深入探讨有助于遏制水传播疾病,提高受污染地下水微生物修复的效率。过去十五年来,对微生物在饱和多孔介质中迁移问题的研究获得很大进展。然而,传统的DLVO理论和胶体过滤理论解释微生物在多孔介质中的迁移过程时存在明显的不足。沥滤、异质性、优先流、微生物特征及生长衰亡过程等对生物胶体迁移存在显著的影响,其实验机理研究和模型模拟研究需要进一步深入。实验室的研究成果往往与野外条件下的不一致,这是加强野外研究的客观要求。野外实验不可控因素多,相对于实验室实验更加复杂。加强野外条件下的研究有助于深入理解生物胶体迁移的复杂规律,促进机理研究和模型模拟的发展。考虑多种机理的模型有复杂化的趋势,如何识别主要机理、简化模型、提高效率是模型研究要注意的问题。
Abstract: Microbial transport in porous media is a hot issue in fields of hydrology and water environment. Re-searches on the issue are helpful to restrain water-borne diseases and to improve the efficiency of polluted groundwater recovery. Over the past 15 years, the understanding about microbial transport in a saturated porous media has been improved substantially. However, the DLVO theory and the colloid filtration theory cannot support a sufficient explanation in microbial transport. Straining, heterogeneity, pore scale force/ torque balance, microbial features, growth and death significantly affect the microbial transport of which mechanisms and modeling need to be enhanced in future studies. In addition, results from laboratorial studies are mostly different with field results, which highlights the necessity to do more field researches. In field experiments, there are many uncontrollable factors and complex situations compared with labora-torial experiments. More field experiments will offer valuable chances to get a thorough comprehension of microbial transport promoting development of transport mechanisms and models. New models tend to become more complicated when trying to integrate more mechanisms. Therefore, how to find the main mechanisms simplifying models and improving efficiency is also a key question.
文章引用:袁瑞强, 郭威, 王仕琴, 王鹏. 微生物在饱和多孔介质中的迁移[J]. 水资源研究, 2016, 5(4): 334-349. http://dx.doi.org/10.12677/JWRR.2016.54040

参考文献

[1] TORKZABAN, S., HASSANIZADEH, S., SCHIJVEN, J., et al. Virus transport in saturated and unsaturated sand columns. Vadose Zone Journal, 2006, 5(3): 877-885.
http://dx.doi.org/10.2136/vzj2005.0086
[2] BERGENDAHL, J., GRASSO, D. Prediction of colloid detachment in a model porous media: Hydrodynamics. Chemical Engineering Science, 2000, 55(9): 1523-1532.
http://dx.doi.org/10.1016/S0009-2509(99)00422-4
[3] SHEN, C., LAZOUSKAYA, V., ZHANG, H., et al. Theoretical and experimental investigation of detachment of colloids from rough collector surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 410: 98-110.
http://dx.doi.org/10.1016/j.colsurfa.2012.06.025
[4] TORKZABAN, S., BRADFORD, S. A., WAN, J., et al. Release of quantum dot nanoparticles in porous media: Role of cation exchange and aging time. Environmental Science & Technology, 2013, 47(20): 11528-11536.
http://dx.doi.org/10.1021/es402075f
[5] EINAT, M., NOAM, W., YOSEPH, Y., et al. Colloid transport in porous media: Impact of hyper-saline solutions. Water Research, 2011, 45(11): 3521-3532.
http://dx.doi.org/10.1016/j.watres.2011.04.021
[6] YAO, K.-M., HABIBIAN, M. T. and O’MELIA, C. R. Water and waste water filtration. Concepts and applications. Environmental Science & Technology, 1971, 5(11): 1105-1112.
http://dx.doi.org/10.1021/es60058a005
[7] BRADFORD, S. A., SIMUNEK, J. and WALKER, S. L. Transport and straining of E. coli O157:H7 in saturated porous media. Water Resources Research, 2006, 42(12): W12S10.
http://dx.doi.org/10.1029/2005WR004805
[8] TONG, M., MA, H. and JOHNSON, W. P. Funneling of flow into grain-to-grain contacts drives colloid-colloid aggregation in the presence of an energy barrier. Environmental Science & Technology, 2008, 42(8): 2826-2832.
http://dx.doi.org/10.1021/es071888v
[9] PACHEPSKY, Y., DEVIN, B., POLYANSKAYA, L., et al. Limited entrapment model to simulate the breakthrough of Arthrobacter and Aquaspirillum in soil columns. International Agrophysics, 2006, 20(3): 207.
[10] FOPPEN, J. W., VAN HERWERDEN, M. and SCHIJVEN, J. Transport of Escherichia coli in saturated porous media: Dual mode deposition and intra-population heterogeneity. Water Research, 2007, 41(8): 1743-1753.
http://dx.doi.org/10.1016/j.watres.2006.12.041
[11] TONG, M., JOHNSON, W. P. Colloid population heterogeneity drives hyperexponential deviation from classic filtration theory. Environmental Science & Technology, 2007, 41(2): 493-499.
http://dx.doi.org/10.1021/es061202j
[12] LI, X., SCHEIBE, T. D. and JOHNSON, W. P. Apparent decreases in colloid deposition rate coefficients with distance of transport under unfavorable deposition conditions: A general phenomenon. Environmental Science & Technology, 2004, 38(21): 5616-5625.
http://dx.doi.org/10.1021/es049154v
[13] BRADFORD, S. A., KIM, H. N., HAZNEDAROGLU, B. Z., et al. Coupled factors influencing concentration-dependent colloid transport and retention in saturated porous media. Environmental Science & Technology, 2009, 43(18): 6996-7002.
http://dx.doi.org/10.1021/es900840d
[14] TUFENKJI, N., ELIMELECH, M. Breakdown of colloid filtration theory: Role of the secondary energy minimum and surface charge heterogeneities. Langmuir, 2005, 21(3): 841-852.
http://dx.doi.org/10.1021/la048102g
[15] KNAPPETT, P., DU, J., LIU, P., et al. Importance of reversible attachment in predicting E. coli transport in saturated aquifers from column experiments. Advances in Water Resources, 2014, 63: 120-130.
http://dx.doi.org/10.1016/j.advwatres.2013.11.005
[16] RAMACHANDRAN, V., FOGLER, H. S. Plugging by hydrodynamic bridging during flow of stable colloidal particles within cylindrical pores. Journal of Fluid Mechanics, 1999, 385(01): 129-156.
http://dx.doi.org/10.1017/S0022112098004121
[17] BRADFORD, S. A., TORKZABAN, S. and SHAPIRO, A. A theoretical analysis of colloid attachment and straining in chemically heterogeneous porous media. Langmuir, 2013, 29(23): 6944-6952.
http://dx.doi.org/10.1021/la4011357
[18] HERZIG, J., LECLERC, D. and GOFF, P. L. Flow of suspensions through porous media—Application to deep filtration. Industrial & Engineering Chemistry, 1970, 62(5): 8-35.
http://dx.doi.org/10.1021/ie50725a003
[19] BRADFORD, S. A., SIMUNEK, J., BETTAHAR, M., et al. Straining of colloids at textural interfaces. Water Resources Research, 2005, 41(10): W10404.
http://dx.doi.org/10.1029/2004WR003675
[20] DU, Y., SHEN, C., ZHANG, H. and HUANG, Y. Effects of flow velocity and nonionic surfactant on colloid straining in saturated porous media under unfavorable conditions. Transport in Porous Media, 2013, 98(1): 193-208.
http://dx.doi.org/10.1007/s11242-013-0140-3
[21] SHEN, C., HUANG, Y., LI, B. and YAN, J. Effects of solution chemistry on straining of colloids in porous media under unfavorable conditions. Water Resources Research, 2008, 44(5): W05419.
http://dx.doi.org/10.1029/2007WR006580
[22] XU, S., LIAO, Q. and SAIERS, J. E. Straining of nonspherical colloids in saturated porous media. Environmental Science & Technology, 2008, 42(3): 771-778.
http://dx.doi.org/10.1021/es071328w
[23] BRADFORD, S. A., YATES, S. R., BETTAHAR, M., et al. Physical factors affecting the transport and fate of colloids in saturated porous media. Water Resources Research, 2002, 38(12): 63-1-63-12.
[24] JOHNSON, W. P., MA, H. and PAZMINO, E. Straining credibility: A general comment regarding common arguments used to infer straining as the mechanism of colloid retention in porous media. Environmental Science & Technology, 2011, 45(9): 3831-3832.
http://dx.doi.org/10.1021/es200868e
[25] DUFFADAR, R., KALASIN, S., DAVIS, J. M. and SANTORE, M. M. The impact of nanoscale chemical features on micron-scale adhesion: Crossover from heterogeneity-dominated to mean-field behavior. Journal of Colloid and Interface Science, 2009, 337(2): 396-407.
http://dx.doi.org/10.1016/j.jcis.2009.05.046
[26] KALASIN, S., SANTORE, M. Hydrodynamic crossover in dynamic microparticle adhesion on surfaces of controlled nanoscale heterogeneity. Langmuir, 2008, 24(9): 4435-4438.
http://dx.doi.org/10.1021/la8000202
[27] SHEN, C., LI, B., WANG, C., et al. Surface roughness effect on deposition of nano- and micro-sized colloids in saturated columns at different solution ionic strengths. Vadose Zone Journal, 2011, 10(3): 1071-1081.
http://dx.doi.org/10.2136/vzj2011.0011
[28] SHEN, C., WANG, L.-P., LI, B., et al. Role of surface roughness in chemical detachment of colloids deposited at primary energy minima. Vadose Zone Journal, 2012, 11(1): 1-12.
http://dx.doi.org/10.2136/vzj2011.0057
[29] TORKZABAN, S., BRADFORD, S. A. Critical role of surface roughness on colloid retention and release in porous media. Water Research, 2016, 88: 274-284.
http://dx.doi.org/10.1016/j.watres.2015.10.022
[30] BRADFORD, S. A., TORKZABAN, S. Colloid interaction energies for physically and chemically heterogeneous porous media. Langmuir, 2013, 29(11): 3668-3676.
http://dx.doi.org/10.1021/la400229f
[31] SPARKS, D. L. Environmental soil chemistry. Cambridge: Academic Press, 2003.
[32] DUFFADAR, R. D., DAVIS, J. M. Interaction of micrometer-scale particles with nanotextured surfaces in shear flow. Journal of Colloid and Interface Science, 2007, 308(1): 20-29.
http://dx.doi.org/10.1016/j.jcis.2006.12.068
[33] SHEN, C., LAZOUSKAYA, V., ZHANG, H., et al. Influence of surface chemical heterogeneity on attachment and detachment of microparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 433: 14-29.
http://dx.doi.org/10.1016/j.colsurfa.2013.04.048
[34] ADAMCZYK, Z., JASZCZółt, K., MICHNA, A., et al. Irreversible adsorption of particles on heterogeneous surfaces. Advances in Colloid and Interface Science, 2005, 118(1): 25-42.
http://dx.doi.org/10.1016/j.cis.2005.03.003
[35] ROY, S. B., DZOMBAK, D. A. Chemical factors influencing colloid-facilitated transport of contaminants in porous media. Environmental Science & Technology, 1997, 31(3): 656-664.
http://dx.doi.org/10.1021/es9600643
[36] KOZLOVA, N., SANTORE, M. M. Manipulation of micrometer-scale adhesion by tuning nanometer-scale surface features. Langmuir, 2006, 22(3): 1135-1142.
http://dx.doi.org/10.1021/la0515221
[37] MOLNAR, I. L, JOHNSON, W. P., GERHARD, J. I., et al. Predicting colloid transport through saturated porous media: A critical review. Water Resources Research, 2015, 51(9): 6804-6845.
http://dx.doi.org/10.1002/2015WR017318
[38] TORKZABAN, S., BRADFORD, S. A. and WALKER, S. L. Resolving the coupled effects of hydrodynamics and DLVO forces on colloid attachment in porous media. Langmuir, 2007, 23(19): 9652-9660.
http://dx.doi.org/10.1021/la700995e
[39] ADAMCZYK, Z., SIWEK, B., ZEMBALA, M. and BELOUSCHEK, P. Kinetics of localized adsorption of colloid particles. Advances in Colloid and Interface Science, 1994, 48: 151-280.
http://dx.doi.org/10.1016/0001-8686(94)80008-1
[40] BRADFORD, S. A., TORKZABAN, S. and WIEGMANN, A. Pore-scale simulations to determine the applied hydrodynamic torque and colloid immobilization. Vadose Zone Journal, 2011, 10(1): 252-261.
http://dx.doi.org/10.2136/vzj2010.0064
[41] GUAN, H., SCHULZE-MAKUCH, D., SCHAFFER, S. and PILLAI, S. D. The effect of critical pH on virus fate and transport in saturated porous medium. Groundwater, 2003, 41(5): 701-708.
http://dx.doi.org/10.1111/j.1745-6584.2003.tb02408.x
[42] GHARABAGHI, B., SAFADOUST, A., MAHBOUBI, A., et al. Temperature effect on the transport of bromide and E. coli NAR in saturated soils. Journal of Hydrology, 2015, 522: 418-427.
http://dx.doi.org/10.1016/j.jhydrol.2015.01.003
[43] 殷宪强, 孙慧敏, 易磊, 等. 孔隙水流速对胶体在饱和多孔介质中运移的影响[J]. 水土保持学报, 2010, 24(5): 101-104. YIN Xianqiang, SUN Huimin, YI Lei, et al. Effect of flowrate of pore water on the transport of colloid in sarutated porous media. Journal of Soil and Water Conservation, 2010, 24(5): 101-104. (in Chinese)
[44] TORKZABAN, S., BRADFORD, S. A., VANDERZALM, J. L., et al. Colloid release and clogging in porous media: Effects of solution ionic strength and flow velocity. Journal of Contaminant Hydrology, 2015, 181: 161-171.
http://dx.doi.org/10.1016/j.jconhyd.2015.06.005
[45] BRADFORD, S. A., BETTAHAR, M. Concentration dependent transport of colloids in saturated porous media. Journal of Contaminant Hydrology, 2006, 82(1-2): 99-117.
http://dx.doi.org/10.1016/j.jconhyd.2005.09.006
[46] 李桂花, 李保国. 大肠杆菌在饱和砂土中的运移及其模拟[J]. 土壤学报, 2003, 40(5): 783-786. LI Guihua, LI Baoguo. Transport of Escherichia coli through saturated sandy soil: experiments and modelling. Acta Pedologica Sinica, 2003, 40(5): 783-786. (in Chinese)
[47] 马雪姣, 金妍, 黄元仿, 等. 冠状病毒IBV和噬菌体MS2在饱和多孔介质中的运移规律[J]. 中国环境科学, 2007, 27(2): 255-259. MA Xuejiao, JIN Yan, HUANG Yuanfang, et al. Transport of avian infectious bronchitis virus (IBV) and bacteriophage (MS2) in saturated porous media. China Environmental Science, 2007, 27(2): 255-259. (in Chinese)
[48] 高琼. 大肠杆菌在土壤中的迁移特性实验研究[D]: [硕士学位论文]. 天津: 天津理工大学, 2011. GAO Qiong. Experimental study of transport characteristics of E. coli in Soils. Tianjin: Tianjin University of Technology, 2011. (in Chinese)
[49] PANG, L. Microbial removal rates in subsurface media estimated from published studies of field experiments and large intact soil cores. Journal of Environmental Quality, 2009, 38(4): 1531-1559.
http://dx.doi.org/10.2134/jeq2008.0379
[50] BRADFORD, S. A., WANG, Y., TORKZABAN, S. and ŠIMŮNEK, J. Modeling the release of E. coli D21g with transients in water content. Water Resources Research, 2015, 51(5): 3303-3316.
http://dx.doi.org/10.1002/2014WR016566
[51] BRADFORD, S. A., TORKZABAN, S., KIM, H. and ŠIMŮNEK, J. Modeling colloid and microorganism transport and release with transients in solution ionic strength. Water Resources Research, 2012, 48(9): 77-86.
http://dx.doi.org/10.1029/2012WR012468
[52] YANG, H., KIM, H. and TONG, M. Influence of humic acid on the transport behavior of bacteria in quartz sand. Colloids and Surfaces B: Biointerfaces, 2012, 91: 122-129.
http://dx.doi.org/10.1016/j.colsurfb.2011.10.058
[53] FOPPEN, J. W, LIEM, Y. and SCHIJVEN, J. Effect of humic acid on the attachment of Escherichia coli in columns of goethite-coated sand. Water Research, 2008, 42(1): 211-219.
http://dx.doi.org/10.1016/j.watres.2007.06.064
[54] HARVEY, R. W, METGE, D. W, BARBER, L. and AIKEN, G. R. Effects of altered groundwater chemistry upon the pH-dependency and magnitude of bacterial attachment during transport within an organically contaminated sandy aquifer. Water Research, 2010, 44(4): 1062-1071.
http://dx.doi.org/10.1016/j.watres.2009.09.008
[55] WALSHE, G. E., PANG, L., FLURY, M., CLOSE, M. E. and FLINTOFT, M. Effects of pH, ionic strength, dissolved organic matter, and flow rate on the co-transport of MS2 bacteriophages with kaolinite in gravel aquifer media. Water Research, 2010, 44(4): 1255-1269.
http://dx.doi.org/10.1016/j.watres.2009.11.034
[56] WEAVER, L., SINTON, L. W., PANG, L., DANN, R. and CLOSE, M. Transport of microbial tracers in clean and organically contaminated silica sand in laboratory columns compared with their transport in the field. Science of the Total Environment, 2013, 443: 55-64.
http://dx.doi.org/10.1016/j.scitotenv.2012.09.049
[57] GUPTA, V., JOHNSON, W. P., SHAFIEIAN, P., et al. Riverbank filtration: comparison of pilot scale transport with theory. Environmental Science & Technology, 2009, 43(3): 669-676.
http://dx.doi.org/10.1021/es8016396
[58] REYNOLDS, P., SHARMA, P., JENNEMAN, G., et al. Mechanisms of microbial movement in subsurface materials. Applied and Environmental Microbiology, 1989, 55(9): 2280-2286.
[59] LUTTERODT, G., BASNET, M., FOPPEN, J. and UHLENBROOK, S. The effect of surface characteristics on the transport of multiple Escherichia coli isolates in large scale columns of quartz sand. Water Research, 2009, 43(3): 595-604.
http://dx.doi.org/10.1016/j.watres.2008.11.001
[60] STEVIK, T. K., AA, K., AUSLAND, G. and HANSSEN, J. F. Retention and removal of pathogenic bacteria in wastewater percolating through porous media: A review. Water Research, 2004, 38(6): 1355-1367.
http://dx.doi.org/10.1016/j.watres.2003.12.024
[61] KIM, H. N., WALKER, S. L. and BRADFORD, S. A. Macromolecule mediated transport and retention of Escherichia coli O157:H7 in saturated porous media. Water Research, 2010, 44(4): 1082-1093.
http://dx.doi.org/10.1016/j.watres.2009.09.027
[62] KUZNAR, Z. A., ELIMELECH, M. Role of surface proteins in the deposition kinetics of Cryptosporidium parvum oocysts. Langmuir, 2005, 21(2): 710-716.
http://dx.doi.org/10.1021/la047963m
[63] KUZNAR, Z. A., ELIMELECH, M. Cryptosporidium oocyst surface macromolecules significantly hinder oocyst attachment. Environmental Science & Technology, 2006, 40(6): 1837-1842.
http://dx.doi.org/10.1021/es051859p
[64] RIJNAARTS, H. H., NORDE, W., LYKLEMA, J. and ZEHNDER, A. J. B. DLVO and steric contributions to bacterial deposition in media of different ionic strengths. Colloids and Surfaces B: Biointerfaces, 1999, 14(1): 179-195.
http://dx.doi.org/10.1016/S0927-7765(99)00035-1
[65] GARGIULO, G., BRADFORD, S., ŠIMŮNEK, J., et al. Bacteria transport and deposition under unsaturated conditions: The role of the matrix grain size and the bacteria surface protein. Journal of Contaminant Hydrology, 2007, 92(3): 255-273.
http://dx.doi.org/10.1016/j.jconhyd.2007.01.009
[66] GROLIMUND, D., ELIMELECH, M. and BORKOVEC, M. Aggregation and deposition kinetics of mobile colloidal particles in natural porous media. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 191(1): 179-188.
http://dx.doi.org/10.1016/S0927-7757(01)00773-7
[67] GINN, T. R. On the distribution of multicomponent mixtures over generalized exposure time in subsurface flow and reactive transport: Theory and formulations for residence-time-dependent sorption/desorption with memory. Water Resources Research, 2000, 36(10): 2885-2893.
http://dx.doi.org/10.1029/2000WR900170
[68] BITTON, G., DAVIDSON, J. M. and FARRAH, S. On the value of soil columns for assessing the transport pattern of viruses through soils: A critical outlook. Water, Air, and Soil Pollution, 1979, 12(4): 449-457.
http://dx.doi.org/10.1007/BF01046866
[69] 陈星欣, 白冰. 重力对饱和多孔介质中颗粒输运特性的影响[J]. 岩土工程学报, 2012, 34(9): 1661-1667. CHEN Xingxin, BAI Bing. Effect of gravity on transport of particles in saturated porous media. Chinese Journal of Geotechnical Engineering, 2012, 34(9): 1661-1667. (in Chinese)
[70] HARTER, T., WAGNER, S. and ATWILL, E. R. Colloid transport and filtration of Cryptosporidium parvum in sandy soils and aquifer sediments. Environmental science & technology, 2000, 34(1): 62-70.
http://dx.doi.org/10.1021/es990132w
[71] CHRYSIKOPOULOS, C. V., KATZOURAKIS, V. E. Colloid particle size-dependent dispersivity. Water Resources Research, 2015, 51: 4668-4683.
http://dx.doi.org/10.1002/2014WR016094
[72] JIANG, G., NOONAN, M. J., BUCHAN, G. D., et al. Transport of Escherichia coli through variably saturated sand columns and modeling approaches. Journal of Contaminant Hydrology, 2007, 93(1-4): 2-20.
http://dx.doi.org/10.1016/j.jconhyd.2007.01.010
[73] TREUMANN, S., TORKZABAN, S., BRADFORD, S. A., et al. An explanation for differences in the process of colloid adsorption in batch and column studies. Journal of Contaminant Hydrology, 2014, 164: 219-229.
http://dx.doi.org/10.1016/j.jconhyd.2014.06.007
[74] CEY, E. E., RUDOLPH, D. L. Field study of macropore flow processes using tension infiltration of a dye tracer in partially saturated soils. Hydrological Processes, 2009, 23(12): 1768-1779.
http://dx.doi.org/10.1002/hyp.7302
[75] PANG, L., MCLEOD, M., AISLABIE, J., et al. Modeling transport of microbes in ten undisturbed soils under effluent irrigation. Vadose Zone Journal, 2008, 7(1): 97-111.
http://dx.doi.org/10.2136/vzj2007.0108
[76] ŠIMŮNEK, J., HE, C., PANG, L. and BRADFORD, S. A. Colloid-facilitated solute transport in variably saturated porous media. Vadose Zone Journal, 2006, 5(3): 1035-1047.
http://dx.doi.org/10.2136/vzj2005.0151
[77] SAFADOUST, A., MAHBOUBI, A., GHARABAGHI, B., et al. Bacterial filtration rates in repacked and weathered soil columns. Geoderma, 2011, 167: 204-213.
http://dx.doi.org/10.1016/j.geoderma.2011.08.014
[78] WALL, K., PANG, L., SINTON, L. and CLOSE, M. Transport and attenuation of microbial tracers and effluent microorganisms in saturated pumice sand aquifer material. Water, Air, and Soil Pollution, 2008, 188(1-4): 213-224.
http://dx.doi.org/10.1007/s11270-007-9537-3
[79] BOLSTER, C. H., MILLS, A. L., HORNBERGER, G. and HERMAN, J. Effect of intra-population variability on the long- distance transport of bacteria. Groundwater, 2000, 38(3): 370-375.
http://dx.doi.org/10.1111/j.1745-6584.2000.tb00222.x
[80] ROY, S. B., DZOMBAK, D. A. Na+-Ca 2+ Exchange effects in the detachment of latex colloids deposited in glass bead porous media. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, 119(2): 133-139.
http://dx.doi.org/10.1016/S0927-7757(96)03764-8
[81] SHEN, C., LAZOUSKAYA, V., Jin, Y., et al. Coupled factors influencing detachment of nano-and micro-sized particles from primary minima. Journal of Contaminant Hydrology, 2012, 134: 1-11.
http://dx.doi.org/10.1016/j.jconhyd.2012.04.003
[82] FOPPEN, J. W. A., SCHIJVEN, J. F. Transport of E. coli in columns of geochemically heterogeneous sediment. Water Research, 2005, 39(13): 3082-3088.
http://dx.doi.org/10.1016/j.watres.2005.05.023
[83] ŠIMŮNEK, J., ŠEJNA, M., SAITO, H., et al. The HYDRUS-1D software package for simulating the movement of water, heat, and multiple solutes in variably saturated media, version 4.0, HYDRUS software series 3. Riverside: Department of Environmental Sciences, University of California Riverside, 2008: 315.
[84] VAN GENUCHTEN, M. T., WAGENET, R. Two-site/two-region models for pesticide transport and degradation: Theoretical development and analytical solutions. Soil Science Society of America Journal, 1989, 53(5): 1303-1310.
http://dx.doi.org/10.2136/sssaj1989.03615995005300050001x
[85] 李桂花, 李保国. 大肠杆菌在饱和砂质壤土中非平衡运移的 CDE 数学模型模拟[J]. 土壤学报, 2006, 43(2): 197-202. LI Guihua, LI Baoguo. Non-equilibrium transport of Escherichia coli through saturated sandy loam and its simulation with CDE model. Acta Pedologica Sinica, 2006, 43(2): 197-202. (in Chinese)
[86] SCHIJVEN, J. F., HASSANIZADEH, S. M. Removal of viruses by soil passage: Overview of modeling, processes, and parameters. Critical Reviews in Environmental Science and Technology, 2000, 30(1): 49-127.
http://dx.doi.org/10.1080/10643380091184174
[87] SCHIJVEN, J. F., HASSANIZADEH, S. M. and DE BRUIN, R. H. Two-site kinetic modeling of bacteriophages transport through columns of saturated dune sand. Journal of Contaminant Hydrology, 2002, 57(3): 259-279.
http://dx.doi.org/10.1016/S0169-7722(01)00215-7
[88] FEIGHERY, J., MAILLOUX, B. J., FERGUSON, A., et al. Transport of E. coli in aquifer sediments of Bangladesh: Implications for widespread microbial contamination of groundwater. Water Resources Research, 2013, 49(7): 3897-3911.
http://dx.doi.org/10.1002/wrcr.20289
[89] TUFENKJI, N., REDMAN, J. A. and ELIMELECH, M. Interpreting deposition patterns of microbial particles in laboratory-scale column experiments. Environmental Science & Technology, 2003, 37(3): 616-623.
http://dx.doi.org/10.1021/es025871i
[90] BRADFORD, S., TORIDE, N. A stochastic model for colloid transport and deposition. Journal of Environmental Quality, 2007, 36(5): 1346-1356.
http://dx.doi.org/10.2134/jeq2007.0004
[91] LEIJ, F. J., BRADFORD, S. A. Combined physical and chemical nonequilibrium transport model: Analytical solution, moments, and application to colloids. Journal of Contaminant Hydrology, 2009, 110(3): 87-99.
http://dx.doi.org/10.1016/j.jconhyd.2009.09.004
[92] LEIJ, F. J., BRADFORD, S. A. Colloid transport in dual-permeability media. Journal of Contaminant Hydrology, 2013, 150: 65-76.
http://dx.doi.org/10.1016/j.jconhyd.2013.03.010
[93] DÍAZ, J., RENDUELES, M. and DÍAZ, M. Straining phenomena in bacteria transport through natural porous media. Environmental Science and Pollution Research, 2010, 17(2): 400-409.
http://dx.doi.org/10.1007/s11356-009-0160-2
[94] BRADFORD, S. A., SIMUNEK, J., BETTAHAR, M., et al. Modeling colloid attachment, straining, and exclusion in saturated porous media. Environmental Science & Technology, 2003, 37(10): 2242-2250.
http://dx.doi.org/10.1021/es025899u
[95] HOSSEINI, S. M., TOSCO, T. Transport and retention of high concentrated nano-Fe/Cu particles through highly flow-rated packed sand column. Water Research, 2013, 47(1): 326-338.
http://dx.doi.org/10.1016/j.watres.2012.10.002
[96] BRADFORD, S. A., VAN GENUCHTEN, M. T. and ŠIMŮNEK, J. Modeling of colloid transport and deposition in porous media//Department of Earth Sciences. Proceedings of Workshop on Hydrus Applications, Netherlands: Utrecht University, 2005: 1.
[97] SEN, T. K., DAS, D., KHILAR, K. C., et al. Bacterial transport in porous media: New aspects of the mathematical model. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 260(1): 53-62.
http://dx.doi.org/10.1016/j.colsurfa.2005.02.033