Δ42PD1稳定表达细胞系的建立及其功能的初步研究
Generation of Δ42PD1-Expressing Stable Cell line and Preliminary Research on the Function Thereof
DOI: 10.12677/IS.2016.41001, PDF, HTML, XML, 下载: 2,259  浏览: 6,757  国家自然科学基金支持
作者: 程 林, 唐 娴*, 曹廷智, 徐六妹, 彭巧丽, 何 云, 王 辉:深圳市第三人民医院艾滋病临床研究实验室,广东 深圳
关键词: 程序性细胞死亡受体1Delta-42程序性细胞死亡受体1流式细胞术蛋白激酶B PD1 Δ42PD1 Flow Cytometry AKT
摘要: 目的:建立稳定表达Δ42PD1的293T细胞系,并探索其对AKT,NF-κB和Erk1/2磷酸化的影响。方法:分别将含有人PD1和Δ42PD1基因的真核表达质粒稳定转染293T细胞,用流式细胞术筛选稳定细胞系,用RT-PCR和Western blot进一步鉴定目基因的表达。将稳定细胞系分别于PBMCs进行孵育,以激活Δ42PD1和PD1,用流式细胞术检测细胞内AKT,NF-κB和Erk1/2的磷酸化水平。结果:通过流式细胞术筛选出稳定表达PD1和Δ42PD1的293T细胞系,RT-PCR和Western blot确认了目的基因的表达。与PBMC混合孵育后,293T细胞内AKT的磷酸化水平被Δ42PD1或PD1显著抑制,而NF-κB和Erk1/2的磷酸化水平没有显著变化。结论:本研究发现Δ42PD1与PD1的功能类似,可能是一种重要的抑制性免疫调节受体。
Abstract: Objective: To establish Δ42PD1-expressing stable 293T cell line and explore the effect of Δ42PD1 on phosphorylation of AKT, NF-κB and Erk1/2. Methods: The human PD1- and Δ42PD1-carrying eukaryotic expression plasmids were stably transfected into 293T cells respectively. Stable cell lines were screened using flow cytometry, and confirmed by RT-PCR and Western blot. The cell lines were co-cultured with PBMC to activate PD1 and Δ42PD1, and then analyzed the phosphorylation of AKT, NF-κB and Erk1/2 via flow cytometry. Results: We obtained PD1- and Δ42PD1-stably expressing 293T cell lines by flow cytometry. The expression of genes of interest was confirmed by RT-PCR and Western blot. After co-culture with PBMC, phosphorylation of AKT but not NF-κB or Erk1/2 in 293T cells was significantly inhibited by Δ42PD1 or PD1. Conclusion: The present study found that functionally similar to PD1, Δ42PD1 could be an important inhibitory immune-regula- tory receptor.
文章引用:程林, 唐娴, 曹廷智, 徐六妹, 彭巧丽, 何云, 王辉. Δ42PD1稳定表达细胞系的建立及其功能的初步研究[J]. 免疫学研究, 2016, 4(1): 1-7. http://dx.doi.org/10.12677/IS.2016.41001

参考文献

[1] Fife, B.T. and Pauken, K.E. (2011) The Role of the PD-1 Pathway in Autoimmunity and Peripheral Tolerance. Annals of the New York Academy of Sciences, 1, 677-704. http://dx.doi.org/10.1111/j.1749-6632.2010.05919.x
[2] Riella, L.V., Paterson, A.M., Sharpe, A.H., et al. (2012) Role of the PD-1 Pathway in the Immune Response. American Journal of Transplantation, 12, 2575-2587. http://dx.doi.org/10.1111/j.1600-6143.2012.04224.x
[3] Dai, S., Jia, R., Zhang, X., et al. (2014) The PD-1/PD-Ls Pathway and Autoimmune Diseases. Cellular Immunology, 290, 72-79. http://dx.doi.org/10.1016/j.cellimm.2014.05.006
[4] Pedoeem, A., Azoulay-Alfaguter, I., Strazza, M., et al. (2014) Programmed Death-1 Pathway in Cancer and Autoimmunity. Clinical Immunology, 153, 145-152. http://dx.doi.org/10.1016/j.clim.2014.04.010
[5] Zheng, P. and Zhou, Z. (2015) Human Cancer Immunotherapy with PD-1/PD-L1 Blockade. Biomark Cancer, 20, 15-18. http://dx.doi.org/10.4137/BIC.S29325
[6] Schmid-Bindert, G. and Jiang, T. (2015) First-Line Nivolumab (anti-PD-1)Monotherapy in Advanced NSCLC: The Story of Immune Checkpoint Inhibitors and “the Sorcerers Apprentice”. Translational Lung Cancer Research, 4, 215-216. http://dx.doi.org/10.3978/j.issn.2218-6751.2015.01.12
[7] Zhou, J., Cheung, A.K., Liu, H., et al. (2013) Potentiating Functional Antigen-Specific CD8(+)T Cell Immunity by a Novel PD1 Isoform-Based Fusion DNA Vaccine. Molecular Therapy, 21, 1445-1455. http://dx.doi.org/10.1038/mt.2013.63
[8] Patsoukis, N., Brown, J., Petkova, V., et al. (2012) Selective Effects of PD-1 on Akt and Ras Pathways Regulate Molecular Components of the Cell Cycle and Inhibit T Cell Proliferation. Science Signaling, 5, ra46. http://dx.doi.org/10.1126/scisignal.2002796
[9] Karyampudi L., Lamichhane, P., Krempski, J., et al. (2016) PD-1 Blunts the Function of Ovarian Tumor-Infiltrating Dendritic Cells by Inactivating NF-κB. Cancer Research, 76, 239-250. http://dx.doi.org/10.1158/0008-5472.CAN-15-0748
[10] Nishimura, H., Nose, M., Hiai, H., et al. (1999) Development of Lu-pus-Like Autoimmune Diseases by Disruption of the PD-1 Gene Encoding an ITIM Motif-Carrying Immunoreceptor. Immunity, 11, 141-151. http://dx.doi.org/10.1016/S1074-7613(00)80089-8
[11] Zamani, M.R., Asbagh, F.A., Massoud, A.H., et al. (2015) Association between a PD-1 Gene Polymorphism and Antisperm Antibody-Related Infertility in Iranian Men. Journal of Assisted Reproduction and Genetics, 32, 103-106. http://dx.doi.org/10.1007/s10815-014-0371-4
[12] Fankhauser, C.D., Curioni-Fontecedro, A., Allmann, V., et al. (2015) Frequent PD-L1 Expression in Testicular Germ Cell Tumors. British Journal of Cancer, 113, 411-413. http://dx.doi.org/10.1038/bjc.2015.244
[13] Ascierto, P.A. and Marincola, F.M. (2015) 2015: The Year of Anti-PD-1/PD-L1s against Melanoma and Beyond. EBioMedicine, 2, 92-93. http://dx.doi.org/10.1016/j.ebiom.2015.01.011
[14] Velu, V., Shetty, R.D., Larsson, M., et al. (2015) Role of PD-1 Co-Inhibitory Pathway in HIV Infection and Potential Therapeutic Options. Retrovirology, 12, 182-190. http://dx.doi.org/10.1186/s12977-015-0144-x
[15] Owusu Sekyere, S., Suneetha, P.V., Kraft, A.R., et al. (2015) A Heterogeneous Hierarchy of Co-Regulatory Receptors Regulates Exhaustion of HCV-Specific CD8 T Cells in Patients with Chronic Hepatitis C. Journal of Hepatology, 62, 31-40. http://dx.doi.org/10.1016/j.jhep.2014.08.008