压缩空气储能系统技术发展和前景展望
Technical Progress and Future Prospect of Compressed Air Energy Storage System
DOI: 10.12677/AEPE.2016.44017, PDF, HTML, XML, 下载: 2,340  浏览: 6,781  国家自然科学基金支持
作者: 梁丹曦, 宋 洁:全球能源互联网研究院,北京;段立强*, 马敬凯, 谢 坤, 陆 浩, 吕志鹏, 袁明野:华北电力大学能源动力与机械工程学院,北京
关键词: 压缩空气储能发展趋势Compressed Air Energy Storage Development Trend
摘要: 本压缩空气储能系统通过对空气的压缩和膨胀做功实现电能的存储和释放,是一种具有广阔发展前景的储能系统。本文综述了压缩空气储能技术的原理、功能以及应用情况,针对传统压缩空气储能系统的缺点,详细总结了研究人员所提出来的各种新型压缩空气储能系统,分析了不同类型的新型压缩空气储能系统的技术特点,并指出了压缩空气储能技术发展趋势。
Abstract: Compressed air energy storage system through the air compression and expansion to achieve en-ergy storage and release is a kind of energy storage system which has a broad prospect. This paper reviews the operating principle, function, and current development status of compressed air energy storage system. Various typical compressed air energy storage systems are summarized in detail in order to overcome the shortcomings of the traditional compressed air energy storage system. The technical characteristics of new different types of compressed air energy storage systems are analyzed, and the development trend of compressed air energy storage technology is pointed out.
文章引用:梁丹曦, 宋洁, 段立强, 马敬凯, 谢坤, 陆浩, 吕志鹏, 袁明野. 压缩空气储能系统技术发展和前景展望[J]. 电力与能源进展, 2016, 4(4): 124-135. http://dx.doi.org/10.12677/AEPE.2016.44017

参考文献

[1] 骆妮, 李建林. 储能技术在电力系统中的研究进展[J]. 电网与清洁能源, 2012, 28(2): 71-79.
[2] 陈来军, 梅生伟, 王俊杰, 卢强. 面向智能电网的大规模压缩空气储能技术[J]. 电工电能新技术, 2014, 33(6): 1- 6.
[3] 杨茂华. 蓄能技术的现状与展望[J]. 能源与节能, 2013(12): 165-167.
[4] 尚景宏, 蔡旭, 张亮, 张楠, 万文涛. 大型风力发电蓄电池储能电源系统应用[J]. 应用科技, 2009, 36(10): 1-3.
[5] 付永领, 李万国. 压缩空气储能发电: 清洁能源发展的又一选择[N]. 中国电力报, 2011-05-14006.
[6] 张新敬, 陈海生, 刘金超, 李文, 谭春青. 压缩空气储能技术研究进展[J]. 储能科学与技术, 2012, 1(1): 26-40.
[7] Kushnir, R., Dayan, A., Ullmann, A., et al. (2012) Temperature and Pressure Variations within Compressed Air Energy Storage Caverns. International Journal of Heat and Mass Transfer, 55, 5617-5619.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.05.055
[8] Jbbeh, N.M. and Najjar, Y.S.H. (2012) Power Augmentation with CAES by Air Injection or Supercharging Makes Environment Greener. Energy, 38, 229-232.
[9] 李小仨, 钱则刚, 杨启超, 张成彦, 李连生. 压缩空气储能技术现状分析[J]. 流体机械, 2013, 41(8): 40-44.
[10] Hobson, M. (1981) Conceptual Design and Engineering Studies of Adiabatic Compressed Air Energy Storage (CAES) with Thermal Energy Storage. NASA STI/Recon Technical Report N.
[11] Bullough, C., Gatzen, C., Jakiel, C., et al. (2004) Advanced Adiabatic Compressed Air Energy Storage for the Integration of Wind Energy. European Wind Energy Conference, London, 8.
[12] Pickard, W.F., Hansing, N.J. and Shen, A.Q. (2009) Can Large-Scale Advanced-Adiabatic Compressed Air Energy Storage Be Justified Economically in an Age of Sustainable Energy. Journal of Renewable and Sustainable Energy, 1, Article ID: 033102.
http://dx.doi.org/10.1063/1.3139449
[13] Jubeh, N.M. and Najjar, Y.S.H. (2012) Green Solution for Power Generation by Adoption of Adiabatic CAES System. Applied Thermal Engineering, 44, 85-89.
http://dx.doi.org/10.1016/j.applthermaleng.2012.04.005
[14] Ibrahim, H., Younès, R., Ilinca, A., et al. (2010) Study and Design of a Hybrid Wind-Diesel-Compressed Air Energy Storage System for Remote Areas. Applied Energy, 87, 1749-1762.
http://dx.doi.org/10.1016/j.apenergy.2009.10.017
[15] Lund, H. and Salgi, G. (2009) The Role of Compressed Air Energy Storage (CAES) in Future Sustainable Energy Systems. Energy Conversion and Management, 50, 1172-1179.
http://dx.doi.org/10.1016/j.enconman.2009.01.032
[16] Lerch, E. (2007) Storage of Fluctuating Wind Energy. 2007 European Conference on Power Electronics and Applications, Aalborg, 2-5 September 2007, 1-8.
http://dx.doi.org/10.1109/EPE.2007.4417781
[17] 杨科, 张远, 李雪梅, 徐建中. 风电与压缩空气蓄能系统的能量转化特性研究[J]. 工程热物理学报, 2014, 35(5): 825-829.
[18] 谭靖, 李国杰, 唐志伟. 基于压缩空气储能的风电场功率调节及效益分析[J]. 电力系统自动化, 2011, 35(8): 33- 37.
[19] 汪海瑛, 白晓民, 许婧. 考虑风光储协调运行的可靠性评估[J]. 中国电机工程学报, 2012, 32(13): 13-20.
[20] 徐玉杰, 陈海生, 刘佳. 风光互补的压缩空气储能与发电一体化系统特性分析[J]. 中国电机工程学报, 2012, 32(20): 88-95.
[21] Katsuhisa, Y. and Toshiya, N. (2005) Optimal Daily Operation of Electric Power Systems with an ACC-CAES Generating System. Electrical Engineering in Japan, 152, 15-23.
http://dx.doi.org/10.1002/eej.20087
[22] 黄健. 压缩空气蓄能-联合循环系统性能分析及优化[D]: [硕士学位论文]. 北京: 华北电力大学, 2014.
[23] 姚尔人, 王焕然, 席光. 一种压缩空气储能与内燃机技术耦合的冷热电联产系统[J]. 西安交通大学学报, 2016, 50(1): 22-27.
[24] 叶彩花, 白一, 乔丽洁. 燃气冷热电联供分布式能源系统中发电机组选择的分析探讨[J]. 城市燃气, 2014(2): 21- 25.
[25] 左政, 华贲. 燃气内燃机与燃气轮机冷热电联产系统的比较[J]. 煤气与热力, 2005, 25(1): 39-42.
[26] Huang, K.D. and Tzeng, S.C. (2005) Development of a Hybrid Pneumatic-Power Vehicle. Applied Energy, 80, 47-59.
http://dx.doi.org/10.1016/j.apenergy.2004.02.006
[27] Wang, S., Chen, G., Fang, M. and Wang, Q. (2006) A New Compressed Air Energy Storage Refrigeration System. Energy Conversion and Management, 47, 3408-3416.
http://dx.doi.org/10.1016/j.enconman.2006.01.007
[28] 曹广亮, 陈曦. 液化空气储能技术的优势分析及发展现状[J]. 真空与低温, 2016, 22(1): 11-15.
[29] Strahan, D. (2013) Liquid Air in the Energy and Transport Systems. The Centre for Low Carbon Futures, UK, 1-28.
[30] Highview Power Storage. 通用电气与英国Highview公司合作开发液化空气储能系统[J]. 华东电力, 2014(4): 810.
[31] 李连生, 杨启超, 赵远扬. 微小型压缩空气储能系统研究[J]. 流体机械, 2014, 42(3): 24-27.
[32] Luo, X., Wang, J., Dooner, M., Clarke, J. and Krupke, C. (2014) Overview of Current Development in Compressed Air Energy Storage Technology. Energy Procedia, 62, 603-611.
http://dx.doi.org/10.1016/j.egypro.2014.12.423