第一性原理研究(Pb1-xSrx)TiO3磁性以及氧空位对其磁性的影响
The Magnetism of (Pb1-xSrx)TiO3 and the Effect of Oxygen Vacancy on Its Magnetism by First-Principles Study
DOI: 10.12677/CMP.2016.53007, PDF, HTML, XML,  被引量 下载: 1,977  浏览: 4,883  国家自然科学基金支持
作者: 林志萍*, 段 鹤, 张 欣:广东工业大学,物理与光电工程学院,广东 广州
关键词: 第一性原理铁电材料氧空位铁磁性First-Principles Ferroelectric Materials Oxygen Vacancy Ferromagnetism
摘要: 本文采用基于密度泛函理论的广义梯度近似方法和赝势平面波法的第一性原理计算讨论了PbTiO3体系的氧的化学势范围、(Pb1−xSrx)TiO3体系的磁性以及氧空位对该体系磁性的影响。结果表明,有Sr掺杂的情况下,(Pb1−xSrx)TiO3体系呈现了一定的弱铁磁性(x = 0.5时的最大磁矩小于0.04μB/unitcell);当存在氧空位时,(Pb1−xSrx)TiO3体系具有铁磁性,磁矩为0.486μB/vacancy 和未掺杂的PbTiO3中由于氧空位的存在而产生的磁矩0.488μB/vacancy 一致。
Abstract: Based on first-principles calculation, it is discussed for the chemical potential regions of oxygen of PbTiO3 system under the thermodynamics equilibrium conditions, the magnetism of (Pb1−xSrx)TiO3 and the effect of oxygen vacancy on the magnetism of (Pb1−xSrx)TiO3. Results displays that increasing Sr, (Pb1−xSrx)TiO3 appears the weak ferromagnetism (and when x = 0.5, the maximum magnetic moment is less than 0.04μB/unitcell). If there is a oxygen vacancy in (Pb1−xSrx)TiO3 system, it takes on the ferromagnetism and magnetic moment is 0.486μB/vacancy , which is agreement with the magnetic moment 0.488μB/vacancy of pure PbTiO3 system with oxygen vacancy.
文章引用:林志萍, 段鹤, 张欣. 第一性原理研究(Pb1-xSrx)TiO3磁性以及氧空位对其磁性的影响[J]. 凝聚态物理学进展, 2016, 5(3): 45-51. http://dx.doi.org/10.12677/CMP.2016.53007

参考文献

[1] Scott, J.F. and Araujo, C.A.P. (1998) Ferroelectric Memories. Science, 246, 1400-1405. http://dx.doi.org/10.1126/science.246.4936.1400
[2] Eerenstein, W., Mathur, N.D. and Scott, J.F. (2006) Multiferroic and Magnetoelectric Materials. Nature (London), 442, 759-765. http://dx.doi.org/10.1038/nature05023
[3] Hur, N., Park, S., Sharma, P.A., Ahn, J.S., Guha, S. and Cheong, S.W. (2004) Electric Polarization Reversal and Memory in Multiferroic Material Induced by Magnetic Fields. Nature (London), 429, 392-395. http://dx.doi.org/10.1038/nature02572
[4] Feibig, M., Lottermoser, Th., Frohlich, D. and Goltsev, A.V. (2002) Observation of Coupled Magnetic and Electric Domains. Nature, 419, 818-820. http://dx.doi.org/10.1038/nature01077
[5] Spaldin, N.A. and Feibig, M. (2005) The Renaissance of Magnetoelectric Multiferroics. Science, 309, 391-392. http://dx.doi.org/10.1126/science.1113357
[6] Cai, M.Q., Yang, G.W., Tang, X., Cao, Y.L., Wang, L.L., Hu, Y.Y., et al. (2007) First-Principles Study of Pressure-Induced Metal-Insulator Transition in BiNiO3. Applied Physics Letters, 91, 101901. http://dx.doi.org/10.1063/1.2779925
[7] Wang, J., Neaton, J.B., Zheng, H., Nagarajan, V., Ogale, S.B., Liu, B., et al. (2003) Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures. Science, 299, 1719-1722. http://dx.doi.org/10.1126/science.1080615
[8] Coey, J.M.D., Venkatesan, M. and Fitzgerald, C.B. (2005) Donor Impurity band Exchange in Dilute Ferromagnetic Oxides. Nature Materials, 4, 173-179. http://dx.doi.org/10.1038/nmat1310
[9] Zhu, Z.Y., Wang, B., Wang, H., Zheng, Y. and Li, Q.K. (2007) The First-Principles Study of Ferroelectric Behaviours of PbTiO3/SrTiO3 and BaTiO3/SrTiO3 Superlattices. Chinese Physics B, 16, 1780. http://dx.doi.org/10.1088/1009-1963/16/6/051
[10] Hill, N.A. (2000) Why Are There so Few Magnetic Ferroelectrics? The Journal of Physical Chemistry B, 104, 6694- 6709. http://dx.doi.org/10.1021/jp000114x
[11] Wang, M., Tan, G.L. and Zhang, Q. (2010) Multiferroic Properties of Nanocrystalline PbTiO3 Ceramics. Journal of the American Ceramic Society, 93, 2151-2154. http://dx.doi.org/10.1111/j.1551-2916.2010.03691.x
[12] Venkatesan, M., Fitzgerald, C.B. and Coey, J.M.D. (2004) Thin Films: Unexpected Magnetism in a Dielectric Oxide. Nature, 430, 630-630. http://dx.doi.org/10.1038/430630a
[13] Sundaresan, A. and Rao, C.N.R. (2009) Ferromagnetism as a Universal Feature of Inorganic Nanoparticles. Nano Today, 4, 96. http://dx.doi.org/10.1016/j.nantod.2008.10.002
[14] Cheng, G.L., Veazey, J.P., et al. (2013) Anomalous Transport in Sketched Nanostructures at the LaAlO3/SrTiO3 Interface. Physical Review X, 3, 011021. http://dx.doi.org/10.1103/PhysRevX.3.011021
[15] Wang, M., Ou, Y.-B., Li, F.S., et al. (2014) Molecular Beam Epitaxy of Single Unit-Cell FeSe Superconducting Films on SrTiO3(001). Acta Physica Sinica, 63, 027401.
[16] Pavlenko, N., Kopp, T., Tsymbal, E.Y., Mannhart, J. and Sawatzky, G.A. (2012) Oxygen Vacancies at Titanate Interfaces: Two-Dimensional Magnetism and Orbital Reconstruction. Physical Review B, 86, 064431. http://dx.doi.org/10.1103/PhysRevB.86.064431
[17] Zhang, Y.J., Hu, J.F., Cao, E.S., Sun, L. and Qin, H.W. (2012) Vacancy Induced Magnetism in SiTiO3. Journal of Magnetism and Magnetic Materials, 324, 1770-1775. http://dx.doi.org/10.1016/j.jmmm.2011.12.036
[18] Sahu, A.K., Kumar, D. and Parkash, O. (2003) Crystallisation of Lead Strontium Titanate Perovskite Phase in [(Pb1-xSrx)O.TiO2]-[2SiO2.B2O3]-[K2O] Glass Ceramics. British Ceramic Transactions, 102, 139-147. http://dx.doi.org/10.1179/096797803225004981
[19] Gautam, C.R., Kumar, D. and Parkash, O. (2010) IR Study of Pb-Sr Titanate Borosilicate Glasses. Bulletin of Materials Science, 33, 145-148.
[20] Gautam, C.R., Kumar, D. and Parkash, O. (2011) Dielectric and Impedance Spectroscopic Studies of (Sr1−xPbx)TiO2 Glass Ceramics with Addition of Nb2O5. Bulletin of Materials Science, 34, 1393-1399. http://dx.doi.org/10.1007/s12034-011-0334-7
[21] Gautam, C.R., Kumar, D., Parkash, O. and Singh, P. (2013) Synthesis, IR, Crystallization and Dielectric Study of (Pb, Sr)TiO3 Borosilicate Glass-Ceramics. Bulletin of Materials Science, 36, 461-469. http://dx.doi.org/10.1007/s12034-013-0489-5
[22] Liu, S.W., Lin, Y., Weaver, J., Donner, W., Chen, X., Chen, C.L., Jiang, J.C. and Meletis, E.I. (2004) High-Dielectric- Tunability of Ferroelectric (Pb, Sr)TiO3 Thin Films on (001) LaAlO3. Applied Physics Letters, 85, 3202-3204. http://dx.doi.org/10.1063/1.1801176
[23] Chen, H.Y., Wu, J.M., Huang, H.E. and Bor, H.Y. (2007) Characteristics of (Pb, Sr)TiO3/ZrO2 Structures on Si and SiON/Si Substrates. Applied Physics Letters, 90, 112907. http://dx.doi.org/10.1063/1.2712807
[24] Luo, L., Ren, H.Z., Tang, X.G., Ding, C.R., Wang, H.Z., et al. (2008) Room Temperature Tunable Blue-Green Luminescence in Nanocrystalline (Pb1-xSrx)TiO3 Thin Film Grown on Yt-trium-Doped Zirconia Substrate. Journal of Applied Physics, 104, 043514. http://dx.doi.org/10.1063/1.2969030
[25] Perdew, J.P., Chevary, J.A., Vosko, S.H., Jackson, K.A., Pederson, M.R., Singh, D.J. and Fiolhais, C. (1992) Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation. Physical Review B, 46, 6671-6687. http://dx.doi.org/10.1103/PhysRevB.46.6671
[26] Kresse, G. and Hafner, J. (1993) Ab initio Molecular Dynamics for Liquid Metals. Physical Review B, 47, 558R. http://dx.doi.org/10.1103/PhysRevB.47.558 Kresse, G. and Hafner, J. (1994) Ab initio Molecular-Dynamics Simulation of the Liquid-Metal—Amorphous-Semi- conductor Transition in Germanium. Physical Review B, 49, 14251. http://dx.doi.org/10.1103/PhysRevB.49.14251
[27] Kresse, G. and Furthmuller, J. (1996) Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Computational Materials Science, 6, 15-50. http://dx.doi.org/10.1016/0927-0256(96)00008-0 Kresse, G. and Furthmuller, J. (1996) Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Physical Review B, 54, 11169. http://dx.doi.org/10.1103/PhysRevB.54.11169
[28] Haynes, W.M. (2007) CRC Handbook of Chemistry and Physics. 92nd Edition, CRC Press, Boca Raton.
[29] Shimada, T., Uratani, Y. and Kitamura, T. (2012) Slip Band-Grain Boundary Interactions in Commercial-Purity Titanium. Acta Materialia, 60, 6322-6330. http://dx.doi.org/10.1016/j.actamat.2012.08.007
[30] Zhao, Y.-J. and Zunger, A. (2004) Site Preference for Mn Substitution in Spintronic CuMIIIXVI2 Chalcopyrite Semiconductors. Physical Review B, 69, 075208. http://dx.doi.org/10.1103/PhysRevB.69.075208
[31] 蒋艳平. 低维钛酸锶铅铁电材料的制备及电学与光学性能研究[D]: [博士学位论文]. 湘潭: 湘潭大学材料与光电物理学院, 2012.