一类人畜共患的传染病模型的研究
A Study of the Zoonotic Infectious Disease Model
DOI: 10.12677/ORF.2016.63011, PDF, HTML, XML, 下载: 1,683  浏览: 3,594 
作者: 张丽娟, 王福昌, 赵宜宾:中国地震局,防灾科技学院,河北 三河
关键词: 数学模型疫苗免疫丧失全局稳定性基本再生数Mathematic Model the Loss of Immunity Global Stability Basic Reproduction Number
摘要: 本文建立了一类畜类群体含潜伏期且潜伏期内有传染性的人畜共患传染病模型。该模型考虑了人感染变异毒株的影响,考虑了对患病畜类捕杀的策略来控制疾病,并讨论了无病平衡点的稳定性,以及系统的基本再生数。通过计算机仿真研究了捕杀系数以及免疫等参数对疾病的影响。
Abstract: This paper established a zoonotic infectious disease model with livestock population containing latent period and there is infectiousness in the latent period. The model considered the influence of strain variation for human and controlling the disease through hunting of the livestock with disease. We also discussed the stability of the disease-free equilibrium and the basic reproduction number of the system. By means of computer simulation, this paper studied the impact of parameters such as hunting coefficient, immune, etc. on diseases.
文章引用:张丽娟, 王福昌, 赵宜宾. 一类人畜共患的传染病模型的研究[J]. 运筹与模糊学, 2016, 6(3): 85-92. http://dx.doi.org/10.12677/ORF.2016.63011

参考文献

[1] Food and Agriculture Organization (2007) Avian Influenza Vaccination. OEI Information Document. http://www.oie.int/downld/AVIAN%20INFLUENZA/Guidelines%20on%20AI%20vaccination.pdf
[2] Food and Agriculture Organization (2011) Animal Intervention Strategies under Different Epidemiological and Field Conditions That Can Deduce Risk of Zoonotic Infection. OFFLU Review Paper. http://www.who.int/influenza/resources/research/2010_04_29_global_influenza_research_agenda_version_01_en.pdf
[3] Brauer, F. (2004) Backward Bifurcations in Simple Vaccination Models. Journal of Mathematical Analysis and Applications, 298, 418.
http://dx.doi.org/10.1016/j.jmaa.2004.05.045
[4] Heffernab, J.M. and Keeling, M.J. (2009) Implications of Vaccination and Waning Immunity. Proceedings of the Royal Society B, 276, 2071-2080.
http://dx.doi.org/10.1098/rspb.2009.0057
[5] Chong, N.S., Tchuenche, J.M. and Smith, R.J. (2014) A Mathe-matical Model of Avian Influenza with Half-Saturated Incidence. Theory in Biosciences, 133, 23-38.
[6] Kaddar, A. (2010) Stability Analysis in a Delayed SIR Epidemic Model with a Saturated Incidence Rate. Nonlinear Analysis: Modelling and Control, 15, 299-306.
[7] Du, Y. and Xu, R. (2010) A Delayed SIR Epidemic Model with Nonlinear Incidence Rate and Pulse Vaccination. Journal of Applied Mathematics and Informatics, 28, 1089-1099.
[8] Gao, S., Chen, L., Nieto, J.J. and Torres, A. (2006) Analysis of a Delayed Epidemic Model with Pulse Vaccination and Saturation Incidence. Vaccine, 24, 6037-6045.
http://dx.doi.org/10.1016/j.vaccine.2006.05.018
[9] Diekmann, O. and Yakubu, A.A. (2002) Mathematical Approaches for Emerging and Reemerging Infectious Diseases: An Introduction. IMA Volumes in Mathematics and its Applications, Vol. 125, Springer, Heidelberg, 229-250.
http://dx.doi.org/10.1007/978-1-4757-3667-0_13