AAM  >> Vol. 5 No. 3 (August 2016)

    广义测不准原理中的数学问题研究
    Study on the Mathematical Problems of Generalized Uncertainty Principles

  • 全文下载: PDF(781KB) HTML   XML   PP.536-559   DOI: 10.12677/AAM.2016.53064  
  • 下载量: 379  浏览量: 514   国家自然科学基金支持

作者:  

徐冠雷,周立佳,邵利民,刘永禄:海军大连舰艇学院军事海洋系,辽宁 大连;
王孝通,徐晓刚:海军大连舰艇学院航海系,辽宁 大连

关键词:
广义测不准原理稀疏表示时频分析分辨率分析范数矩阵分解Generalized Uncertainty Principle Sparse Representation Time-Frequency Analysis Resolution Analysis Norm Entropy Matrix Factorization

摘要:
测不准原理(Uncertainty Principle,又称不确定原理)是数学、信息学与信号处理、物理学等交叉学科中的基本法则,具有重要的理论意义和价值。本文从数学角度出发,针对近年来受到广泛关注和研究的广义不确定原理(即时频分析广义测不准原理和信号稀疏表示广义测不准原理两大方面),给出了广义不确定原理研究中所涉及的主要数学问题,包括传统数学不等式在广义域内的推导证明、信号不同范数下的优化求解、矩阵优化分解等问题,既包括特定广义域内的推导证明,又包括不同变换基函数或框架下的数学优化,对于广义测不准原理中的数学问题进行了总结,并给出了其存在的问题,讨论了下一步可能的研究思路和方向。

The uncertainty principle is the elementary rule in the crossed fields of mathematics, information and physics and so on, which plays an important role in scientific sense and engineering value. This paper discussed the mathematical problems in the research of widely studied generalized uncertainty principles (i.e., the generalized uncertainty principles on time-frequency analysis and the generalized uncertainty principles on sparse representation), including the extension of the traditional inequalities to the generalized domains, the optimization of various p-norms, the op-timal matrix factorization and so on. The review of these mathematical problems is the focus in this paper, and the disadvantages and the future work of these mathematical problems are discussed as well.

文章引用:
徐冠雷, 王孝通, 周立佳, 邵利民, 刘永禄, 徐晓刚. 广义测不准原理中的数学问题研究[J]. 应用数学进展, 2016, 5(3): 536-559. http://dx.doi.org/10.12677/AAM.2016.53064

参考文献

[1] Heisenberg, W. (1927) Uber den anschaulichen inhalt der quanten theoretischen Kinematik und Mechanik. Zeitschrift für Physik, 43, 172-198.
http://dx.doi.org/10.1007/BF01397280
[2] Heinig, H.P. and Smith, M. (1986) Extensions of the Heisenberg-Weyl Inequality. International Journal of Mathe- matics and Science, 9, 185-192.
http://dx.doi.org/10.1155/S0161171286000212
[3] Selig, K.K. (2002) Uncertainty Principles Revisited. Electronic Transactions on Numerical Analysis, 14, 145-177.
[4] Folland, G.B. and Sitaram, A. (1997) The Uncertainty Principle: A Mathematical Survey. The Journal of Fourier Analysis and Applications, 3, 207-238.
http://dx.doi.org/10.1007/BF02649110
[5] Hirschman Jr., I.I. (1957) A Note on Entropy. American Journal of Mathematics, 79, 152-156.
http://dx.doi.org/10.2307/2372390
[6] Lohmann, A.W. (1994) Relationships between the Radon-Wigner and Fractional Fourier Transfoms. Journal of the Optical Society of America A, 11, 1398-1401.
http://dx.doi.org/10.1364/JOSAA.11.001798
[7] Majerník, V., Majerníková, E. and Shpyrko, S. (2003) Uncer-tainty Relations Expressed by Shannon-Like Entropies. Central European Journal of Physics, 3, 393-420.
http://dx.doi.org/10.2478/bf02475852
[8] Iwo, B.B. (1985) Entropic Uncertainty Relations in Quantum Me-chanics. In: Accardi, L. and von Waldenfels, W., Eds., Quantum Probability and Applications II, Lecture Notes in Mathematics 1136, Springer, Berlin, 90-103.
[9] Stankovic, L., Alieva, T. and Bastiaans, M.J. (2003) Time-Frequency Signal Analysis Based on the Windowed Fractional Fourier Transform. Signal Processing, 83, 2459-2468.
http://dx.doi.org/10.1016/S0165-1684(03)00197-X
[10] Cohen, L. (2000) The Uncertainty Principles of Windowed Wave Functions. Optics Communications, 179, 221-229.
http://dx.doi.org/10.1016/S0030-4018(00)00454-5
[11] Beckner, W. (1995) Pitt’s Inequality and the Uncertainty Principle. Proceedings of the American Mathematical Society, 123, 1897-1905.
http://dx.doi.org/10.1090/s0002-9939-1995-1254832-9
[12] Beckner, W. (1975) Inequalities in Fourier Analysis. The Annals of Mathematics, 102, 159-182.
http://dx.doi.org/10.2307/1970980
[13] Cohen, L. (1994) The Uncertainty Principle in Signal Analysis. Proceed-ings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis, IEEE, 182-185.
[14] Loughlin, P.J. and Cohen, L. (2004) The Uncertainty Principle: Global, Local, or Both? IEEE Transaction on Signal Processing, 52, 1218-1227.
http://dx.doi.org/10.1109/TSP.2004.826160
[15] Ozaktas, H.M. and Aytur, O. (1995) Fractional Fourier Domains. Signal Processing, 46, 119-124.
http://dx.doi.org/10.1016/0165-1684(95)00076-P
[16] Mustard, D. (1991) Uncertainty Principle Invariant under Fractional Fourier Transform. Journal of the Australian Mathematical Society Series B, 33, 180-191.
http://dx.doi.org/10.1017/S0334270000006986
[17] Shinde, S. and Vikram, M.G. (2001) An Uncertainty Principle for Real Signals in the Fractional Fourier Transformdomain. IEEE Transaction on Signal Processing, 49, 2545-2548.
http://dx.doi.org/10.1109/78.960402
[18] Stern, A. (2008) Uncertainty Principles in Linear Canonical Transform Domains and Some of Their Implications in Optics. Journal of the Optical Society of America A, 25, 647-652.
http://dx.doi.org/10.1364/JOSAA.25.000647
[19] Stern, A. (2007) Sampling of Compact Signals in Offset Linear Canonical Transform Domains. Signal, Image and video Processing, 1, 359-367.
http://dx.doi.org/10.1007/s11760-007-0029-0
[20] Aytur, O. and Ozaktas, H.M. (1995) Non-Orthogonal Domains in Phase Space of Quantum Optics and Their Relation to Fractional Fourier Transform. Optics Communications, 120, 166-170.
http://dx.doi.org/10.1016/0030-4018(95)00452-E
[21] Maassen, H. (1988) A Discrete Entropic Uncertainty Rela-tion. In: In: Accardi, L. and von Waldenfels, W., Eds., Quantum Probability and Applications V, Springer-Verlag, New York, 263-266.
[22] Maassen, H. and Uffink, J.B.M. (1983) Generalized Entropic Uncertainty Relations. Physical Re-view Letters, 60, 1103-1106.
http://dx.doi.org/10.1103/PhysRevLett.60.1103
[23] Amir, D. and Cover, T.M. and Thomas, J.A. (2001) Information Theoretic Inequalities. IEEE Trans Information Theory, 37, 1501-1508.
[24] Iwo, B.B. (2006) Formulation of the Uncertainty Relations in Terms of the Rényi Entropies. Physical Review A, 74, Article ID: 052101.
[25] Iwo, B.B. (2006) Rényi Entropy and the Uncertainty Relations. In: Adenier, G., Fuchs, C.A. and Khrennikov, A.Y., Eds., Foundations of Probability and Physics, American Institute of Physics, Melville, 52-62
[26] Gill, J. (2005) An Entropymeasure of Uncertainty in Vote Choice. Electoral Studies, 1-22.
[27] Rényi, A. (1976) Some Fundamental Questions of Information Theory. In: Selected Papers of Alfred Renyi, Vol. 2, Akademia Kiado, Budapest, 526-552.
[28] Rényi, A. (1960) On Measures of Information and Entropy. Proceedings of the 4th Berkeley Symposium on Mathematics, Statistics and Probability, 1, 547-561.
[29] Sharma, K.K. and Joshi, S.D. (2008) Uncertainty Principle for Real Signals in the Linear Canonical Transform Domains. IEEE Transaction on Signal Processing, 56, 2677-2683.
http://dx.doi.org/10.1109/TSP.2008.917384
[30] Shannon, C.E. (1948) A Mathemat-ical Theory of Communication. The Bell System Technical Journal, 27, 379-656.
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
[31] Wódkiewicz, K. (1984) Operational Approach to Phase-Space Measurements in Quantum Mechanics. Physical Review Letters, 52, 1064-1067.
http://dx.doi.org/10.1103/PhysRevLett.52.1064
[32] Xu, G., Wang, X. and Xu, X. (2009) Three Cases of Uncer-tainty Principle for Real Signals in Linear Canonical Transform Domain. IET Signal Processing, 3, 85-92.
http://dx.doi.org/10.1049/iet-spr:20080019
[33] Xu, G., Wang, X. and Xu, X. (2009) Uncertainty Inequalities for Linear Canonical Transform. IET Signal Processing, 3, 392-402.
http://dx.doi.org/10.1049/iet-spr.2008.0102
[34] Xu, G., Wang, X. and Xu, X. (2009) The Logarithmic, Heisen-berg’s and Windowed Uncertainty Principles in Fractional Fourier Transform Domains. Signal Processing, 89, 339-343.
http://dx.doi.org/10.1016/j.sigpro.2008.09.002
[35] Xu, G., Wang, X. and Xu, X. (2009) The Entropic Uncertainty Principle in Fractional Fourier Transform Domains. Signal Processing, 89, 2692-2697.
http://dx.doi.org/10.1016/j.sigpro.2009.05.014
[36] Xu, G., Wang, X. and Xu, X. (2010) Novel Uncertainty Rela-tions in Fractional Fourier Transform Domain for Real Signals. Chinese Physics B, 19, 294-302.
[37] Xu, G., Wang, X. and Xu, X. (2009) New Inequalities and Uncertainty Relations on Linear Canonical Transform Revisit. EURASIP Journal on Advances in Signal Processing, 1-17.
[38] Zhao, J., Tao, R., Li, Y. and Wang, Y. (2009) Uncertainty Prin-ciples for Linear Canonical Transform. IEEE Transactions on Signal Processing, 57, 2856-2858.
http://dx.doi.org/10.1109/TSP.2009.2020039
[39] Xia, X.G. (1996) On Bandlimited Signals with Fractional Fourier Transform. IEEE Signal Processing Letter, 3, 72-74.
http://dx.doi.org/10.1109/97.481159
[40] Wilk, G. and Włodarczyk, Z. (2009) Uncertainty Relations in Terms of the Tsallis Entropy. Physical Review A, 79, Article ID: 062108.
http://dx.doi.org/10.1103/PhysRevA.79.062108
[41] Amir, D., Cover, T.M. and Thomas, J.A. (2001) Information Theoretic Inequalities, IEEE Trans Information Theory, 37, 1501-1508.
[42] Xu, G., Wang, X., Zhou, L., Shao, L. and Xu, X. (2013) Discrete Entropic Uncertainty Relations Associated with FRFT. Journal of Signal and Information Processing, 4, 120-124.
http://dx.doi.org/10.4236/jsip.2013.43B021
[43] Xu, X.G., Wang, X.T., Wang, L., Liu, B., Su, S. and Xu, X. (2013) Generalized Uncertainty Principles Associated with Hilbert Transform. Signal, Image and Video Processing, 8, 279-285.
http://dx.doi.org/10.1007/s11760-013-0547-x
[44] Xu, G., Wang, X. and Zhou, L. (2013) Generalized Uncertainty Relations on Fractional Fourier Transform for Discrete Signals and Filtering of LFM Signals. Journal of Signal and Information Processing, 4, 274-281.
http://dx.doi.org/10.4236/jsip.2013.43035
[45] Tao, R., Li, Y. and Wang, Y. (2009) Short-Time Fractional Fourier Transform and Its Applications. IEEE Transaction on Signal Processing, 58, 2568-2580.
http://dx.doi.org/10.1109/TSP.2009.2028095
[46] Ozaktas, H.M., Kutay, M.A. and Zalevsky, Z. (2000) The Fractional Fourier Transform with Applications in Optics and Signal Processing. John Wiley & Sons, New York.
[47] Pei, S.C., Yeh, M.H. and Luo, T.L. (1999) Fractional Fourier Series Expansion for Finite Signals and Dual Extension to Discrete-Time Fractional Fourier Transform. IEEE Transaction on Signal Processing, 47, 2883-2888.
http://dx.doi.org/10.1109/78.790671
[48] Xu, G., Wang, X. and Xu, X. (2010) On Uncertainty Principle for the Linear Canonical Transform of Complex Signals. IEEE Transactions on Signal Processing, 58, 4916-4918.
http://dx.doi.org/10.1109/TSP.2010.2050201
[49] Almeida, L.B. (1994) The Fractional Fourier Transform and Time-Frequency Representations. IEEE Transaction on Signal Processing, 42, 3084-3091.
http://dx.doi.org/10.1109/78.330368
[50] Dang, P., Deng, G.-T. and Qian, T. (2013) A Tighter Uncertainty Prin-ciple for Linear Canonical Transform in Terms of Phase Derivative. IEEE Transactions on Signal Processing, 61, 5153-5164.
http://dx.doi.org/10.1109/TSP.2013.2273440
[51] Dang, P., Deng, G.-T. and Qian, T. (2013) A Sharper Uncer-tainty Principle. Journal of Functional Analysis, 265, 2239- 2266.
http://dx.doi.org/10.1016/j.jfa.2013.07.023
[52] Shi, J., Liu, X. and Zhang, N. (2012) On Uncertainty Principle for Signal Concentrations with Fractional Fourier Transform. Signal Processing, 92, 2830-2836.
http://dx.doi.org/10.1016/j.sigpro.2012.04.008
[53] Pei, S.-C. and Ding, J.-J. (2009) Uncertainty Principle of the 2-D Affine Generalized Fractional Fourier Transform. Proceedings of 2009 APSIPA Annual Summit and Conference, Sapporo, October 4-7, 2009, 414-417.
[54] 陶然, 邓兵, 王越. 分数阶Fourier变换及其应用[M]. 北京: 北京清华大学出版社, 2009.
[55] 冉启文, 谭立英. 分数傅里叶光学导论[M]. 北京: 北京科学出版社, 2004.
[56] 张贤达, 保铮. 非平稳信号分析与处理[M]. 北京: 北京国防工业出版社, 1998.
[57] Xu, G., Wang, X., Zhou, L. and Xu, X. (2013) New Inequalities on Sparse Representation in Pairs of Bases. IET Signal Processing, 7, 674-683.
http://dx.doi.org/10.1049/iet-spr.2012.0365
[58] Xu, G., Wang, X., Xu, X. and Zhou, L. (2016) Entropic Uncer-tainty Inequalities on Sparse Representation. IET Signal Processing, 10, 413-421.
http://dx.doi.org/10.1049/iet-spr.2014.0072
[59] Donoho, D. and Stark, P. (1989) Uncertainty Principles and Signal Recovery. SIAM Journal on Applied Mathematics, 49, 906-931.
http://dx.doi.org/10.1137/0149053
[60] Donoho, D. (2006) Compressed Sensing. IEEE Transactions on Informa-tion Theory, 52, 1289-1306.
http://dx.doi.org/10.1109/TIT.2006.871582
[61] Candès, E. and Romberg, J. (2007) Sparsity and Incoherence in Compressive Sampling. Inverse Problems, 23, 969-985.
http://dx.doi.org/10.1088/0266-5611/23/3/008
[62] Candès, E.J. and Wakin, M.B. (2008) An Introduction to Compressive Sampling. IEEE Signal Processing Magazine, 25, 21-30.
http://dx.doi.org/10.1109/MSP.2007.914731
[63] Donoho, D.L. and Huo, X. (2001) Uncertainty Principles and Ideal Atomic Decomposition. IEEE Transactions on Information Theory, 47, 2845-2862.
http://dx.doi.org/10.1109/18.959265
[64] Elad, M. and Bruckstein, A.M. (2002) A Generalized Uncertainty Prin-ciple and Sparse Representation in Pairs of Bases. IEEE Transactions on Information Theory, 48, 2558-2567.
http://dx.doi.org/10.1109/TIT.2002.801410
[65] Feuer, A. and Nemirovski, A. (2003) On Sparse Representation in Pairs of Bases. IEEE Transactions on Information Theory, 49, 1579-1581.
http://dx.doi.org/10.1109/TIT.2003.811926
[66] Gribonval, R. and Nielsen, M. (2003) Sparse Representations in Unions of Bases. IEEE Transactions on Information Theory, 49, 3320-3325.
http://dx.doi.org/10.1109/TIT.2003.820031
[67] Li, Y. and Amari, S. (2010) Two Conditions for Equivalence of 0-Norm Solution and 1-Norm Solution in Sparse Representation. IEEE Transactions on Neural Networks, 21, 1189-1196.
http://dx.doi.org/10.1109/TNN.2010.2049370
[68] Fuchs, J.J. (2004) On Sparse Representations in Arbitrary Redundant Bases. IEEE Transactions on Information Theory, 50, 1341-1344.
http://dx.doi.org/10.1109/TIT.2004.828141
[69] Lyubarskii, Y. and Vershynin, R. (2010) Uncertainty Principles and Vector Quantization. IEEE Transactions on Information Theory, 56, 3491-3501.
http://dx.doi.org/10.1109/TIT.2010.2048458
[70] Patrick, K., Giuseppe, D. and Helmut, B. (2012) Uncertainty Relations and Sparse Signal Recovery for Pairs of General Signal Sets. IEEE Transactions on Information Theory, 58, 263-277.
http://dx.doi.org/10.1109/TIT.2011.2167215
[71] Benjamin, R. and Bruno, T. (2013) Refined Support and Entropic Uncertainty Inequalities. IEEE Transactions on Information Theory, 59, 4272-4279.
http://dx.doi.org/10.1109/TIT.2013.2249655
[72] Goha, S.S. and Goodmanb, T.N.T. (2006) Uncertainty Principles in Banach Spaces and Signal Recovery. Journal of Approximation Theory, 143, 26-35.
http://dx.doi.org/10.1016/j.jat.2006.03.009
[73] Eldar, Y.C. (2009) Uncertainty Relations for Shift-Invariant Analog Signals. IEEE Transactions on Information Theory, 55, 5742-5757.
http://dx.doi.org/10.1109/TIT.2009.2032711
[74] Agaskar, A. and Lu, Y. (2013) A Spectral Graph Uncertainty Principle. IEEE Transactions on Information Theory, 59, 4338-4356.
http://dx.doi.org/10.1109/TIT.2013.2252233
[75] Candés, E.J. and Tao, T. (2005) Decoding by Linear Program-ming. IEEE Transactions on Information Theory, 51, 4203-4215.
http://dx.doi.org/10.1109/TIT.2005.858979
[76] Chen, S., Donoho, D.L. and Saunders, M.A. (1998) Atomic De-composition by Basis Pursuit. SIAM Journal on Scientific Computing, 20, 33-61.
http://dx.doi.org/10.1137/S1064827596304010
[77] Candès, E., Romberg, J. and Tao, T. (2005) Stable Signal Recovery from Incomplete and Inaccurate Measurements. Communications on Pure and Applied Mathematics, 59, 1207-1223.
http://dx.doi.org/10.1002/cpa.20124
[78] Davis, G., Mallat, S. and Avellaneda, M. (1997) Adaptive Greedy Approximations in Constructive Approximation. Springer-Verlag, New York, Vol. 13, 57-98.
[79] Mallat, S. and Zhang, Z. (1993) Matching Pursuits with Time-Frequency Dictionaries. IEEE Transactions on Signal Processing, 41, 3397-3415.
http://dx.doi.org/10.1109/78.258082
[80] Pati, Y.C., Rezaiifar, R. and Krishnaprasad, P.S. (1993) Orthogonal Matching Pursuit: Recursive Function Approximation with Applications to Wavelet Decomposition. Pro-ceeding of 27th Annual Asilomar Conference on Signals Systems and Computers, Asilomar, 1-3 November 2009, 40-44.
http://dx.doi.org/10.1109/ACSSC.1993.342465
[81] Candès, E., Romberg, J. and Tao, T. (2006) Robust Uncertainty Principles: Exact Signal Reconstruction from Highly Incomplete Frequency Information. IEEE Transactions on Information Theory, 52, 489-509.
http://dx.doi.org/10.1109/TIT.2005.862083
[82] Tropp, J.A. (2004) Greed Is Good. IEEE Transactions on In-formation Theory, 50, 2231-2242.
http://dx.doi.org/10.1109/TIT.2004.834793
[83] Cevher, V. and Krause, A. (2011) Greedy Dictionary Selection for Sparse Representation. IEEE Journal of Selected Topics in Signal Processing, 5, 979-2011.
http://dx.doi.org/10.1109/JSTSP.2011.2161862
[84] 张贤达. 矩阵分析及应用[M]. 第二版. 北京: 清华大学出版社, 2015.
[85] Tropp, J.A. and Gilbert, A.C. (2007) Signal Recovery from Random Measurements via Orthogonal Matching Pursuit. IEEE Transactions on Information Theory, 53, 4655-4666.
http://dx.doi.org/10.1109/TIT.2007.909108
[86] Needell, D. and Vershynin, R. (2007) Uniform Uncertainty Principle and Signal Recovery via Regularized Orthogonal Matching Pursuit. Foundations of Computational Mathe-matics, 9, 317-334.
http://dx.doi.org/10.1007/s10208-008-9031-3
[87] Donoho, D.L., et al. (2006) Sparse Solution of Underdeter-mined Linear Equations by Stagewise Orthogonal Matching Pursuit. Department of Statistics, Stanford University, Stanford, Technical Report 2006-02, 200.
[88] Blumensath, T. and Davies, M.E. (2008) Gradient Pursuits. IEEE Transactions on Signal Processing, 56, 2370-2382.
http://dx.doi.org/10.1109/TSP.2007.916124
[89] Mohimani, G.H., Babaie-Zadeh, M. and Jutten, C. () Com-plex-Valued Sparse Representation Based on Smoothed l0 norm. IEEE International Conference on Acoustics, Speech and Signal Processing, Las Vegas, March 2008, 3881- 3884.
[90] Mohimani, H., Babaie-Zadeh, M. and Jutten, C. (2009) A Fast Approach for Overcomplete Sparse Decomposition Based on Smoothed l0 Norm. IEEE Transaction on Signal Processing, 57, 289-301.
http://dx.doi.org/10.1109/TSP.2008.2007606
[91] Ji, S. and Carin, L. (2007) Bayesian Compressive Sensing and Projection Optimization. Proceedings of the 24th International Conference on Machine Learning (ICML). Corvallis, 20-24 June 2007, 377-384.
http://dx.doi.org/10.1145/1273496.1273544
[92] Ji, S., et al. (2008) Bayesian Compressive Sensing. IEEE Transactions on Signal Processing, 56, 2346-2356.
http://dx.doi.org/10.1109/TSP.2007.914345
[93] Baraniuk, R., Cevher, V., Duarte, M.F. and Hegde, C. (2010) Model Based Compressive Sensing. IEEE Transactions on Information Theory, 56, 1982-2001.
http://dx.doi.org/10.1109/TIT.2010.2040894
[94] Natarajan, B.K. (1995) Sparse Approximate Solutions to Linear Systems. SIAM Journal of Computing, 24, 227-234.
http://dx.doi.org/10.1137/S0097539792240406
[95] Candes, E.J. and Tao, T. (2009) The Power of Convex Re-laxation: Near-Optimal Matrix Completion. IEEE Transactions on Information Theory, 56, 2053-2080.
http://dx.doi.org/10.1109/TIT.2010.2044061
[96] Chandrasekaran, V., Sanghavi, S., Parrilo, P.A. and Willsky, A.S. (2011) Rank-Sparsity Incoherence for Matrix Decomposition. SIAM Journal on Optimization, 21, 572-596.
http://dx.doi.org/10.1137/090761793
[97] Cai, J.F., Candes, E.J. and Shen, Z.W. (2010) A Singular Value Thre-sholding Algorithm for Matrix Completion. SIAM Journal on Optimizatinon, 20, 1956-1982.
http://dx.doi.org/10.1137/080738970
[98] Ma, S., Goldfarb, D. and Chen, L. (2008) Fixed Point and Bregman Iterative Methods for Matrix Rank Minimization. Technical Report.
[99] Keshavan, R.H., Montanari, A. and Sewoong, O.H. (2010) Matrix Completion from a Few Entries. IEEE Transactions on Information Theory, 56, 2980-2998.
http://dx.doi.org/10.1109/TIT.2010.2046205
[100] Benjamin, R. (2009) A Simpler Approach to Matrix Completion. Journal of Machine Learning Research, 12, 3413- 3430.a