磁流变液夹层板隔声性能研究
Sound Insulation Performance of the Sandwich Panel Cored with Magneto-Rheological Fluid
DOI: 10.12677/OJTT.2016.55015, PDF, HTML, XML, 下载: 1,773  浏览: 2,495  科研立项经费支持
作者: 戚利利, 徐晓美*, 石 静, 刘 凯, 陆安琪:南京林业大学汽车与交通工程学院,江苏 南京
关键词: 夹层板隔声性能传声损失磁流变液Sandwich Panels Sound Insulation Performance Sound Transmission Loss Magneto-Rheological Fluid
摘要: 本文基于波阻抗分析法建立了夹层板的传声损失数学模型,根据松弛时间谱间接估算了磁流变液的粘弹性模量,基于此理论模型,采用MATLAB编写相应的传声损失数值模拟程序,仿真研究了磁流变液夹层板的传声损失。研究结果表明,励磁电流对磁流变液夹层板的传声损失具有明显的影响,通过调节励磁电流,可以实现夹层板隔声能力的半主动控制;夹层板的芯层厚度并非越大越好,大的芯层厚度易于使吻合频率落入夹层板的常用工作频率范围,从而恶化夹层板的低频隔声性能;夹层板的面板材料选取要综合考虑夹层板的高、低频隔声能力,且要注意成本和轻量化的要求。
Abstract: Mathematical model of the sound transmission loss (STL) of sandwich panels is firstly established based on the method of wave impedance analysis. And then, the viscoelastic moduli of magneto-rheological fluid are estimated indirectly according to the relaxation time spectrum. Finally, the simulation program of the STL of sandwich panels is coded by MATLAB and then the STL of sandwich panels is analyzed. Research results show that there are obvious effects of the field current on the STL, and semi-active control of the sound insulation performance of the sandwich panel can be realized by adjusting the field current; the core layer thickness of the sandwich panel is not the bigger the better because bigger thickness is easy to make the coincidence frequency fall into the common operating frequency range of sandwich panels and thus worsens the sound insulation performance of sandwich panel in low frequency range; selection of face sheet material should comprehensively consider the sound insulation performance of panels in both low and high frequency ranges, and the panel cost and lightweight requirements should also be considered.
文章引用:戚利利, 徐晓美, 石静, 刘凯, 陆安琪. 磁流变液夹层板隔声性能研究[J]. 交通技术, 2016, 5(5): 118-125. http://dx.doi.org/10.12677/OJTT.2016.55015

参考文献

[1] Lu, T. and Xin, F. (2014) Vibro-Acoustics of Lightweight Sandwich Structures. Springer, Berlin.
http://dx.doi.org/10.1007/978-3-642-55358-5
[2] Mahjoob, M.J., Mohammadi, N. and Malakooti, S. (2009) An Investigation into the Acoustic Insulation of Triple- Layered Panels Containing Newtonian Fluids: Theory and Experiment. Applied Acoustics, 70, 165-171.
http://dx.doi.org/10.1016/j.apacoust.2007.12.002
[3] 范玉岭, 王敏庆.复合板隔声性能分析[J]. 噪声与振动控制, 2007(2): 90-93.
[4] Choi, S.B., Seo, J.W. and Kim, J.H. (2001) An Electrorheological Fluid-Based Plate for Noise Reduction in a Cabin: Experimental Results. Journal of Sound and Vibration, 239, 178-185.
http://dx.doi.org/10.1006/jsvi.2000.3051
[5] Korobko, E.V., Baev, A.R., Bubulis, A., Kuzmin, et al. (2015) The Peculiarities of Ultrasound Wave Propagation in Magnetorheological Fluid with Complex Dispersive Phase. Vibroengineering Procedia, No. 6, 326-329.
[6] Wang, T., Sokolinsky, V.S., Rajaram, S., et al. (2005) Assessment of Sandwich Models for the Prediction of Sound Transmission Loss in Unidirectional Sandwich Panels. Applied Acoustics, 66, 245-262.
http://dx.doi.org/10.1016/j.apacoust.2004.08.005
[7] Zhou, R. (2009) Sound Transmission Loss of Composite Sandwich Panels. Auburn University, Alabama.
[8] Pierce, A.D. (1981) Acoustics: An Introduction to Its Physical Principles and Applications. McGraw-Hill Book Company, New York.
[9] Weese, J. (1992) A Reliable and Fast Method for the Solution of Fredholm Integral Equations of the First Kind Based on Tikhonov Regularization. Computer Physics Communications, 69, 99-111.
http://dx.doi.org/10.1016/0010-4655(92)90132-I
[10] Mahjoob, M.J., Mohammadi, N. and Malakooti, S. (2012) Analytical and Experimental Evaluation of Magnetic Field Effect on Sound Transmission Loss of MR-Based Smart Multi-layered Panels. Applied Acoustics, 73, 614-623.
http://dx.doi.org/10.1016/j.apacoust.2011.12.015