小型哺乳动物产热特征的研究
The Research on Small Mammals Thermogenesis
DOI: 10.12677/BP.2016.63008, PDF, HTML, XML, 下载: 2,049  浏览: 4,459 
作者: 陈金龙*, 何银忠, 严毅:昆明市海口林场,云南 昆明;王娟:云南师范大学文理学院,云南 昆明;左木林:云南师范大学生命科学学院,云南 昆明
关键词: 基础代谢率静止代谢率非颤抖性产热Basal Metabolic Rate Resting Metabolic Rate Nonshivering Thermogenesis
摘要: 能量是生命现象的流通货币,产热是生物体内能量的一部分。小型哺乳动物产热特征是小型哺乳动物在自然环境胁迫下的生存机制和适应对策。本文分别从基础代谢率、静止代谢率、非颤抖性产热三部分综述了小型哺乳动物的产热特征。
Abstract: Energy is currency of life phenomena; thermogenesis is part of organism energy. The survival mechanism and adaptive strategy small mammals under the environmental stress are their unique thermogenesis. This paper summarizes thermogenesis of small mammals by the basal metabolic rate, resting metabolic rate, and nonshivering thermogenesis.
文章引用:陈金龙, 何银忠, 严毅, 王娟, 左木林. 小型哺乳动物产热特征的研究[J]. 生物过程, 2016, 6(3): 53-57. http://dx.doi.org/10.12677/BP.2016.63008

参考文献

[1] Brown, J.H., Gillooly, J.F., Allen, A.P., et al. (2004) Toward a Metabolic of Ecology. Ecology, 85, 1771-1789.
http://dx.doi.org/10.1890/03-9000
[2] McNab, B.K. (1997) On the Utility of Uniformity in the Definition of Basal Rate of Metebolism. Physiological Zoology, 70, 718-720.
http://dx.doi.org/10.1086/515881
[3] Garland Jr., T. and Carter, P.A. (1994) Evolutionary Physiology. Annual Review of Physiology, 56, 579-621.
http://dx.doi.org/10.1146/annurev.ph.56.030194.003051
[4] Liang, H. and Zhang, Z.B. (2003) Effects of Food Restriction on Physiological Conditions of Small Rodents. Acta Theriologica Sinica, 23, 175-182.
[5] Voltura, M.B. and Wunder, B.A. (1998) Effects of Ambient Temperature, Diet Quality, and Food Restriction on Body Composition Dynamics of the Prairie Voles, Microtus ochrogaster. Physiological Zoology, 171, 321-328.
http://dx.doi.org/10.1086/515929
[6] Degen, A.A. (1997) Ecophysiology of Small Desert Mammals. Springer-Verlag Berlin Heidelberg, Berlin, 163-236.
http://dx.doi.org/10.1007/978-3-642-60351-8
[7] 王德华, 王祖望. 小哺乳动物在高寒环境中的生存对策: II高原鼠兔和根田鼠非颤抖性产热(NST)的季节性变化[J]. 兽类学报, 1990, 10(1): 40-53.
[8] Blaxter, K. (1989) Enery Metabolism in Animal and Man. Cambridge University Press, New York, 110-143.
[9] Daan, S., Masman, D. and Groenewold, A. (1990) Avian Basal Metabolic Rates: Their Association with Body Composition and Energy Expenditure in Nature. American Journal of Physiology, 259, 333-340.
[10] McNab, B.K. (2002) The Physiological Ecology of Vertebrates. Cornell University Press, New York, 576.
[11] Johnston, I.A. and Bennett, A.F. (1996) Animals and Temperature: Phenotypic and Evolutionary Adaptation. Society for Experimental Biology. Cambridge University Press, Cambridge.
http://dx.doi.org/10.1017/CBO9780511721854
[12] Speakman, J.R. (2003) Colin Selman Physical Activity and Resting Metabolic Rate. Proceedings of the Nutrition Society, 62, 621-634.
http://dx.doi.org/10.1079/PNS2003282
[13] Dohm, M.R., Hayes, J.P. and Garland Jr., T. (2001) The Quantitative Genetics of Maximal and Basal Metabolic Rates of Oxygen Consumption in Mice. Genetics, 159, 267-277.
[14] Thomas, D.W., Blondel, J., Perret, P., et al. (2001) Energetic and Fitness Costs of Mismatching Resources Supply and Demand in Seasonally Breeding Birds. Science, 291, 2598-2600.
http://dx.doi.org/10.1126/science.1057487
[15] Hill, J.O., Latiff, A. and DiGirolamo, M. (1985) Effects of Variable Caloric Restriction on Utilization of Ingested Energy in Rats. American Journal of Physiology, 248, R549-R559.
[16] Baskin, D.G., Blevins, J.E. and Schwartz, M.W. (2001) How the Brain Regulates Food Intake and Body Weight: The Role of Leptin. Journal of Pediatric Endocrinology and Metabolism, 14, 1417-1429.
[17] Claussen, T.C.V. and Hardeveld, M.E.E. (1991) Significance of Cation Transport in Vontrol of Energy Metabolism and Thermogenesis. Physiological Reviews, 71, 733-773.
[18] Bozinovic, F. and Rosenmann, M. (1989) Maximum Metabolic Rates of Rodents: Physiological and Ecological Consequences on Distribution Limits. Functional Ecology, 3, 173-181.
http://dx.doi.org/10.2307/2389298
[19] Adolph, E.F. and Lawrow, J.W. (1951) Acclimalization to Cold Air: Hypothermia and Heat Production in the Golden Hamaster. American Journal of Physiology, 166, 62-74.
[20] 鲍伟东, 王德华, 王祖望, 周延林, 王利民. 鄂尔多斯高原库布齐沙地三趾跳鼠静止代谢率的季节变化[J]. 动物学报, 2002, 46(2): 146-153.
[21] McNab, B.K. (2008) An Analysis of the Factors that Influence the Level and Scaling of Mammalian BMR. Compara-tive Biochemistry and Physiology, 151, 5-28.
http://dx.doi.org/10.1016/j.cbpa.2008.05.008
[22] Silva, J.E. (2006) Thermogenic Mechanisms and Their Hormonal Regulation. Physiological Reviews, 86, 435-464.
http://dx.doi.org/10.1152/physrev.00009.2005
[23] Nedergaard, J., Golozoubova, V., Matthias, A., Asadi, A., Jacobsson, A. and Cannon, B. (2001) UCP1: The Only Protein Able to Mediate Adaptive Non-Shivering Thermogenesis and Metabolic Inefficiency. Biochimica et Biophysica Acta, 1504, 82-106.
http://dx.doi.org/10.1016/S0005-2728(00)00247-4
[24] Golozoubova, V., Hohtola, E., Matthias, A., Jacobsson, A., Cannon, B. and Nedergaard, J. (2001) Only UCP1 Can Mediate Adaptive Nonshivering Thermogenesis in the Cold. FASEB Journal, 15, 2048-2050.
http://dx.doi.org/10.1096/fj.00-0536fje
[25] Feldmann, H.M., Golozoubova, V., Cannon, B. and Nedergaard, J. (2009) UCP1 ABLATION induces Obesity and Abolishes Diet-Induced Thermogenesis in Mice Exempt from Thermal Stress by Living at Ther-moneutrality. Cell Metabolism, 9, 203-209.
http://dx.doi.org/10.1016/j.cmet.2008.12.014