生物医用Mg-4.0Zn-0.2Ca-1.0Gd合金的固溶工艺及其耐蚀性能研究
Investigation on Solid Solution Treatment and Corrosion Resistance of Mg-4.0Zn-0.2Ca-1.0Gd Alloy for Biomedical Application
DOI: 10.12677/MS.2016.65039, PDF, HTML, XML, 下载: 1,890  浏览: 3,893  科研立项经费支持
作者: 唐昌平, 宁汝斌, 成声亮:湖南科技大学机电工程学院,湖南 湘潭
关键词: 生物医用Mg-Zn-Ca合金固溶第二相耐蚀性能Biomedical Application Mg-Zn-Ca Alloy Solid Solution Second Phase Corrosion Resistance
摘要: 采用金相显微观察、硬度测试、扫描电镜观察、能谱仪、X射线衍射及电化学分析等手段,研究了Mg-4.0Zn-0.2Ca-1.0Gd合金在固溶过程中的组织与性能演变,结果表明:铸态合金主要由α-Mg基体和非平衡共晶组成,非平衡共晶包括Mg2Ca、Mg5.05Gd、MgZn及Ca2Mg6Zn3;经分级固溶处理后,非平衡共晶可基本溶入基体,较优的固溶处理工艺为320℃/6h + 400℃/6h + 500℃/6h;固溶态合金具有较优的耐蚀性能,在模拟体液和模拟海水中的自腐蚀电位分别为−1.578 V和−1.656 V。
Abstract: Microstructure and property evolution of Mg-4.0Zn-0.2Ca-1.0Gd alloy during solution treatment were investigated using optical microscopy (OM), hardness testing, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction and electrochemical analysis. The results indicated that the microstructure of the as-cast alloy was comprised of α-Mg and non- equilibrium eutectics. The non-equilibrium eutectics contain the phases of Mg2Ca, Mg5.05Gd, MgZn and Ca2Mg6Zn3. These phases were able to dissolve into the matrix after progressive solid solution. The superior solid solution regime was determined to be 320˚C/6h + 400˚C/6h + 500˚C/6h. The corrosion resistance of the solution treated samples was relatively good. The corrosion potential for the samples in simulated body fluid and simulated sea water were −1.578 V and −1.656 V, re-spectively.
文章引用:唐昌平, 宁汝斌, 成声亮. 生物医用Mg-4.0Zn-0.2Ca-1.0Gd合金的固溶工艺及其耐蚀性能研究[J]. 材料科学, 2016, 6(5): 300-307. http://dx.doi.org/10.12677/MS.2016.65039

参考文献

[1] 余琨, 陈良建, 雷路, 张思慧. 镁合金作为生物医用植入材料的研究进展[J]. 金属功能材料, 2009, 16(4): 61-64.
[2] Zheng, Y.F., Gu, X.N. and Witte, F. (2014) Biodegradable Metals. Materials Science and Engineering, 77, 1-34.
http://dx.doi.org/10.1016/j.mser.2014.01.001
[3] Yun, Y., Dong, Z.Y., Yang, D., Schulz, M.J., Shanov, V.N., Yarmolenko, S., Xu, Z.G., Kumta, P. and Sfeir, C. (2009) Biodegradable Mg Corrosion and Osteoblast Cell Culture Studies. Materials Science and Engineering, 29, 1814-1821.
http://dx.doi.org/10.1016/j.msec.2009.02.008
[4] Yang, L. and Zhang, E.L. (2009) Biocorrosion Behavior of Magnesium Alloy in Different Simulated Fluids for Biomedical Application. Materials Science and Engineering, 29, 1691-1696.
http://dx.doi.org/10.1016/j.msec.2009.01.014
[5] Wang, C.J., Deng, K.K., Nie, K.B., Shang, S.J. and Liang, W. (2016) Com-petition Behavior of the Strengthening Effects in As-Extruded AZ91 Matrix: Influence of Pre-Existed Mg17Al12 Phase. Materials Science and Engineering, 656, 102-110.
http://dx.doi.org/10.1016/j.msea.2016.01.023
[6] Jamali, S.S., Faraji, G. and Abrinia, K. (2016) Evaluation of Mechanical and Metallurgical Properties of AZ91 Seamless Tubes Produced by Radial-Forward Extrusion Method. Materials Science and Engineering, 666, 176-183.
http://dx.doi.org/10.1016/j.msea.2016.04.048
[7] Han, G.M., Han, Z.Q., Luo, A.A. and Liu, B.C. (2015) Microstructure Characteristics and Effect of Aging Process on the Mechanical Properties of Squeeze-Cast AZ91 Alloy. Journal of Alloys and Com-pounds, 641, 56-63.
http://dx.doi.org/10.1016/j.jallcom.2015.04.042
[8] Nie, K.B., Wang, X.J., Deng, K.K., Xu, F.J., Wu, K. and Zheng, M.Y. (2014) Microstructures and Mechanical Properties of AZ91 Magnesium Alloy Processed by Multidirectional Forging under Decreasing Temperature Conditions. Journal of Alloys and Compounds, 617, 979-987.
http://dx.doi.org/10.1016/j.jallcom.2014.08.148
[9] Nie, K.B., Deng, K.K., Wang, X.J., Xu, F.J., Wu, K. and Zheng, M.Y. (2015) Multidirectional Forging of AZ91 Magnesium Alloy and Its Effects on Microstructures and Mechanical Properties. Materials Science and Engineering, 624, 157-168.
http://dx.doi.org/10.1016/j.msea.2014.11.076
[10] Luckey, T.D. and Venugopal, B. (1978) Metal Toxicity in Mammals. Plenum Press, New York.
[11] Kirkland, N.T., Staiger, M.P., Nisbet, D., Davies, C.H.J. and Birbilis, N. (2011) Performance-Driven Design of Biocompatible Mg Alloys. Journal of the Minerals Metals and Materials Society, 63, 28-34.
http://dx.doi.org/10.1007/s11837-011-0089-z
[12] Song, Y.W., Shan, D.Y., Chen, R.S., Zhang, F. and Han, E.H. (2009) Biode-gradable Behaviors of AZ31 Magnesium Alloy in Simulated Body Fluid. Materials Science and Engineering, 29, 1039-1045.
http://dx.doi.org/10.1016/j.msec.2008.08.026
[13] Witte, F., Hort, N., Vogt, C., Cohen, S., Kainer, K.U., Willumeit, R. and Feyerabend, F. (2008) Degradable Biomaterials Based on Magnesium Corrosion. Current Opinion in Solid State and Materials Science, 12, 63-72.
http://dx.doi.org/10.1016/j.cossms.2009.04.001
[14] Li, Z.J., Gu, X.N., Lou, S.Q. and Zheng, Y.F. (2008) The Development of Binary Mg-Ca Alloys for Use as Biodegradable Materials within Bone. Biomaterials, 29, 1329-1344.
http://dx.doi.org/10.1016/j.biomaterials.2007.12.021
[15] Wan, Y.Z., Xiong, G.Y., Luo, H.L., He, F., Huang, Y. and Zhou, X.S. (2008) Preparation and Characterization of a New Biomedical Magnesium-Calcium Alloy. Materials & Design, 29, 2034-2037.
http://dx.doi.org/10.1016/j.matdes.2008.04.017
[16] Kim, W.C., Kim, J.G., Lee, J.Y. and Seok, H.K. (2008) Influence of Ca on the Corrosion Properties of Magnesium for Biomaterials. Materials Letters, 62, 4146-4148.
http://dx.doi.org/10.1016/j.matlet.2008.06.028
[17] Zhang, B.P., Hou, Y.L., Wang, X.D., Wang, Y. and Geng, L. (2011) Me-chanical Properties, Degradation Performance and Cytotoxicity of Mg-Zn-Ca Biomedical Alloys with Different Compositions. Mate-rials Science and Engineering, 31, 1667-1673.
http://dx.doi.org/10.1016/j.msec.2011.07.015
[18] Zhang, E.L., Yin, D.S., Xu, L.P., Yang, L. and Yang, K. (2009) Microstructure, Mechanical and Corrosion Properties and Biocompatibility of Mg-Zn-Mn Alloys for Biomedical Application. Materials Science and Engineering, 29, 987- 993.
http://dx.doi.org/10.1016/j.msec.2008.08.024
[19] Bai, J., Yin, L.L., Lu, Y., Gan, Y.W., Xue, F., Chu, C.L., Yan, J.L., Yan, K., Wan, X.F. and Tang, Z.J. (2014) Preparation, Microstructure and Degradation Performance of Biomedical Magnesium Alloy Fine Wires. Progress in Natural Science: Materials International, 24, 523-530.
http://dx.doi.org/10.1016/j.pnsc.2014.08.015
[20] Nakamura, Y., Tsumura, Y., Tonogai, Y., Shibata, T. and Ito, Y. (1997) Dif-ferences in Behavior among the Chlorides of Seven Rare Earth Elements Administered Intravenously to Rats. Fundamental and Applied Toxicology, 37, 106-116.
http://dx.doi.org/10.1006/faat.1997.2322
[21] Song, G.L. (2007) Control of Biodegradation of Biocompatable Magnesium Alloys. Corrosion Science, 49, 1696-1701.
http://dx.doi.org/10.1016/j.corsci.2007.01.001
[22] 李江波, 王陆, 李利, 聂凯波, 阎佩雯, 张金山, 许春香, 马彦伟, 李卫国. Mg-Zn-Sr 生物医用材料在模拟体液中的腐蚀性能研究[J]. 中国铸造装备与技术, 2016(2): 5-8.