裂缝性致密砂岩储层声波测井物理模型试验
The Physical Model Experiment of Sonic Logging in Fractured Tight Sandstone Reservoirs
DOI: 10.12677/JOGT.2016.383024, PDF, HTML, XML, 下载: 1,965  浏览: 3,745  国家科技经费支持
作者: 龚 丹:油气资源与勘探技术教育部重点实验室(长江大学),湖北 武汉;长江大学期刊社,湖北 荆州 ;章成广:油气资源与勘探技术教育部重点实验室(长江大学),湖北 武汉
关键词: 声波测井裂缝性致密砂岩物理模型测井响应特征Acoustic Logging Fractured Tight Sandstone Physical Model Logging Response Characteristics
摘要: 低孔、低渗致密砂岩油气藏等复杂油气藏是当前及今后相当长时间内油气勘探的主体。因此,低孔、低渗致密砂岩的精细评价成为测井专业的发展趋势和核心任务。为此,开展了裂缝性致密砂岩储层声波测井物理模型试验研究。该次研究包括模型井试验和小岩心试验两部分:模型井试验用100倍带光源读数显微镜(刻度1DIV/0.02 mm)来刻度裂缝宽度(100 µm~14 mm),再用声波测井换能器来测量不同裂缝宽度时的波形;小岩心试验针对不同孔隙度(3.7%~7.5%)、不同裂缝宽度(30~500 µm)下,纵波、横波同一时刻的波峰幅度进行纵向对比,得到声波幅度的变化趋势。试验结果表明:随着裂缝宽度的增加,纵波和横波幅度都呈明显的衰减趋势;与纵波幅度的变化情况相比,横波的衰减情况更严重;裂缝宽度越大,纵波、横波衰减系数越大。综合物理模型试验测量结果及已研究的数值模拟计算结果认为,当裂缝宽度小于100 μm时,波形幅度随裂缝宽度的变化非常敏感,递减幅度非常快,不能定量确定裂缝宽度。
Abstract: Tight sandstone reservoir with low porosity and low permeability has been the major location for oil and gas exploration at present and in the years to come. Therefore, the fine evaluation of tight sandstone reservoirs with low porosity and low permeability was a development trend and core task for well logging. For this purpose, the research and experiment of sonic logging physical model were carried out in fractured tight sandstone reservoirs. The research included modeling wells and small core experiments. The modeling wells experiment was carried out by using 100 time light readout microscope (scale 1DIV/0.02 mm) to scale the fracture width (100 µm - 14 mm), and acoustic logging transducer was applied to measure the waveforms at different fracture widths. In the small core experiment, different porosities (3.7% - 7.5%) and different fissure widths (30 - 500 µm) were taken into consideration, the P-wave and S-wave amplitudes were longitudinally compared in the experiment at the same time and the variation trend of wave amplitude was obtained from the experiment. The experiment results showed that diminishing trend of P-wave and S-wave amplitude attenuation was more obvious with the increase of fracture width. Compared with the changes of the P-wave amplitude, attenuation of S-wave was more obvious. The greater the fracture width was, the larger the attenuation coefficient of P-wave and S-wave was. The results of physical model and numerical simulation show that waveform amplitude is very sensitive and diminishes rapidly with the change of fracture width when the fracture width is less than 100 μm. Therefore fracture width cannot be determined quantitatively.
文章引用:龚丹, 章成广. 裂缝性致密砂岩储层声波测井物理模型试验[J]. 石油天然气学报, 2016, 38(3): 41-49. http://dx.doi.org/10.12677/JOGT.2016.383024

参考文献

[1] Hornby, B., Johnson, D. and Winkler, K. (1989) Fracture Evaluation Using Reflected Stoneley-Wave Arrivals. Geo-physics, 54, 1274-1288.
http://dx.doi.org/10.1190/1.1442587
[2] Tang, X.M. and Cheng, C.H. (1993) Borehole Stoneley Wave Propagation across Permeable Structures. Geophysical Prospecting, 41, 165-187.
http://dx.doi.org/10.1111/j.1365-2478.1993.tb00864.x
[3] Tang, X.M. (1991) Dynamic Peameability and Bore-hole Stoneley Waves: A Simplified Biot-Rosenbaum Model. The Journal of the Acoustical Society of America, 90, 1632-1646.
http://dx.doi.org/10.1121/1.401904
[4] Tang, X.M. and Cheng, C.H. (1996) Fast Inversion of For-mation Permeability from Stoneley Wave Logs Using a Simplified Biot-Rosenbaum Model. Geophysics, 61, 639-645.
http://dx.doi.org/10.1190/1.1443993
[5] Tang, X.M. (1991) Dynamic Peameability and Borehole Stoneley Waves: A Simplified Biot-Rosenbaum Model. The Journal of the Acoustical Society of America, 90, 1632-1646.
http://dx.doi.org/10.1121/1.401904
[6] Tang, X.M. and Cheng, C.H. (1993) Borehole Stoneley Wave Propagation across Permeable Structures. Geophysical Prospecting, 41, 165-187.
http://dx.doi.org/10.1111/j.1365-2478.1993.tb00864.x
[7] Tang, X.M. and Cheng, C.H. (1996) Fast Inversion of Formation Permeability from Stoneley Wave Logs Using a Simplified Biot-Rosenbaum Model. Geophysics, 61, 639-645.
http://dx.doi.org/10.1190/1.1443993
[8] Tang, X.M. (1990) Acoustic Logging in Crackd and Porous Formations. Ph.D. Thesis, Massachusetts Institute of Technology, Boston.
[9] Chen, S.T. (1982) The Full Acoustic Wave Train in a Laboratory Model of a Borehole. Geophysics, 47, 1512-1520.
http://dx.doi.org/10.1190/1.1441301
[10] Chen, S.T. (1989) Shear Wave Logging with Muhi-Pole Sources. Geo-physics, 54, 590-597.
http://dx.doi.org/10.1190/1.1442686
[11] Winkler, K.W. (1989) Permeability and Borehole Stoneley Waves: Comparison between Experiment and Theory. Geophysics, 54, 66-75.
http://dx.doi.org/10.1190/1.1442578
[12] 李长文. 水平渗透性裂缝对并孔斯通利波传播的影响[J]. 测井技术, 1996, 20(3): 162-168.
[13] 余春昊, 李长文. 利用斯通利波信息进行裂缝评价[J]. 测井技术, 1998, 22(3): 273-277.
[14] 龚丹, 章成广. 裂缝性致密砂岩储层声波测井数值模型研究[J]. 石油天然气学报, 2016, 38(2): 29-35.