基于亚波长多齿光栅结构的双功能偏振选择分束器的研究
A Dual-Function Polarization-Selective Beam Splitter Based on a Subwavelength Multi-Subpart Profile Grating Structure
DOI: 10.12677/APP.2016.69025, PDF, HTML, XML, 下载: 2,052  浏览: 4,316  国家自然科学基金支持
作者: 马林飞, 肖文波, 吴华明*, 徐欢欢, 段军红:无损检测与光电传感技术及应用国家地方联合工程实验室、无损检测技术教育部重点实验室, 江西 南昌;江西省光电检测技术工程实验室、南昌航空大学测试与光电工程学院,江西 南昌;肖永生*, 黄丽贞:南昌航空大学信息工程学院,江西 南昌
关键词: 衍射光栅泄露模谐振偏振分束器Diffraction and Gratings Polarizing Beam Splitters (PBSs) Leaky-Mode Resonance (LMR)
摘要: 本文主要介绍了一种基于单层微纳多齿谐振光栅的双功能偏振分束器。严格耦合波理论分析表明,在垂直入射时,对于TE偏振光(电场平行于光栅槽线)来说,该器件在1.46~1.58 μm宽谱范围内,其反射率大于97%;而对于TM偏振光(磁场平行于光栅槽线)来说,该结构在1.55 μm波长处,能够实现50/50反射和透射分束比。此外,为了分析此器件对结构参数变化的响应,我们还分析了此结构的工艺容差性。
Abstract: In this paper, a dual-function polarization selective beam splitter (PSBS) constructed by only a single layer subwavelength multi-subpart profile grating is presented. Rigorous coupled-wave analysis is adopted to investigate the properties of the structure. It is shown that for transverse electric (TE) polarized wave, the device demonstrates very high reflectivity (>97%) from 1.46 to 1.58 µm; and for transverse magnetic (TM) polarized wave, at the wavelength of 1.55 μm, it exhibits about 50/50 beam ratio under normal incidence. To evaluate the response of the PSBS under variation in structure parameters, we also investigated the fabrication tolerances of the device.
文章引用:马林飞, 肖文波, 吴华明, 徐欢欢, 肖永生, 黄丽贞, 段军红. 基于亚波长多齿光栅结构的双功能偏振选择分束器的研究[J]. 应用物理, 2016, 6(9): 193-203. http://dx.doi.org/10.12677/APP.2016.69025

参考文献

[1] [1] Liang, T.K. and Tsang, H.K. (2005) Integrated Polarization Beam Splitter in High Index Contrast Silicon-on-Insulator Waveguides. IEEE Photonics Technology Letters, 17, 393-395. http://dx.doi.org/10.1109/LPT.2004.839462
[2] Ojima, M., Saito, A., Kaku, T., et al. (1986) Compact Magnetooptical Disk for Coded Data Storage. Applied Optics, 25, 483-489. http://dx.doi.org/10.1364/AO.25.000483
[3] Song, Q.W., Lee, M.C. and Talbot, P.J. (1992) Polarization Sensitivity of Birefringent Photorefractive Holograms and Its Applications to Binary Switching. Applied Optics, 31, 6240-6246. http://dx.doi.org/10.1364/AO.31.006240
[4] Gao, W., Zhou, X., Zhang, J., et al. (2008) A Proof-of-Principle Experiment of Eliminating Photon-Loss Errors in Cluster States. New Journal of Physics, 10, Article ID: 055003. http://dx.doi.org/10.1088/1367-2630/10/5/055003
[5] Li, L. and Dobrowolski, J.A. (2000) High-Performance Thin-Film Polarizing Beam Splitter Operating at Angles Greater than the Critical Angle. Applied Optics, 39, 2754-2771. http://dx.doi.org/10.1364/AO.39.002754
[6] Zheng, J., Zhou, C., Feng, J., et al. (2009) A Metal-Mirror-Based Reflecting Polarizing Beam Splitter. Journal of Optics A: Pure and Applied Optics, 11, Article ID: 015710. http://dx.doi.org/10.1088/1464-4258/11/1/015710
[7] Zheng, J., Zhou, C., Feng, J., et al. (2008) Polarizing Beam Splitter of Deep-Etched Triangular-Groove Fused-Silica Gratings. Optics Letters, 33, 1554-1556. http://dx.doi.org/10.1364/OL.33.001554
[8] Wu, H., Mo, W., Hou, J., et al. (2010) Polarizing Beam Splitter Based on a Subwavelength Asymmetric Profile Grating. Journal of Optics, 12, Article ID: 015703. http://dx.doi.org/10.1088/2040-8978/12/1/015703
[9] 张新彬. 偏振分束光栅的设计和制造[M]. 福州: 福建师范大学, 2015.
[10] Feng, J. and Zhou, Z. (2007) Polarization Beam Splitter Using a Binary Blazed Grating Coupler. Optics Letters, 32, 1662-1664. http://dx.doi.org/10.1364/OL.32.001662
[11] 冯俊波. 硅基微纳光栅耦合器件及其制备技术研究[D]: [博士学位论文]. 武汉: 华中科技大学图书馆, 2009.
[12] Zheng, J., Zhou, C., Feng, J., Cao, H. and Lu, P. (2009) Polarizing Beam Splitter of Two-Layer Dielectric Rectangular Transmission Gratings in Littrow Mounting. Optics Communications, 282, 3069-3075. http://dx.doi.org/10.1016/j.optcom.2009.05.011
[13] Yang, J., Zhou, Z., Wang, X., et al. (2011) Compact Double-Layer Subwavelength Binary Blazed Grating 1 × 4 Splitter Based on Silicon-on-Insulator. Optics Letters, 36, 837-839. http://dx.doi.org/10.1364/OL.36.000837
[14] Lee, W. and Degertekin, F.L. (2004) Rigorous Coupled-Wave Analysis of Multilayered Grating Structures. Journal of Lightwave Technology, 22, 2359-2363. http://dx.doi.org/10.1109/JLT.2004.833278
[15] Wu, H., Huang, L., Xiao, Y., et al. (2013) A Wideband Reflector Realized by a Subwavelength Multi-Subpart Profile Grating Structure. Journal of Optics, 15, Article ID: 035703. http://dx.doi.org/10.1088/2040-8978/15/3/035703
[16] Shokooh-Saremi, M. and Magnusson, R. (2007) Particle Swarm Optimization and Its Application to the Design of Diffraction Grating Filters. Optics Letters, 32, 894-896. http://dx.doi.org/10.1364/OL.32.000894
[17] 吴华明, 徐欢欢, 马林飞, 肖永生, 黄丽贞, 肖文波, 段军红. 宽带多齿谐振光栅反射镜的研究[J]. 应用物理, 2016, 6(8): 167-174.
[18] Shokooh-Saremi, M. and Magnusson, R. (2008) Wideband Leaky-Mode Resonance Reflectors: Influence of Grating Profile and Sublayers. Optics Express, 16, 18249-18263. http://dx.doi.org/10.1364/OE.16.018249
[19] Ding, Y. and Magnusson, R. (2007) Band Gaps and Leaky-Wave Effects in Resonant Photonic-Crystal Waveguides. Optics Express, 15, 680-694. http://dx.doi.org/10.1364/OE.15.000680
[20] Magnusson, R. and Wang, S.S. (1992) New Principle for Optical Filters. Applied Physics Letters, 61, 1022-1024. http://dx.doi.org/10.1063/1.107703
[21] Mateus, C.F.R., Huang, M.C.Y., Chen, L., Chang-Hasnain, C.J. and Suzuki, Y. (2004) Broad-Band Mirror (1.12 - 1.62/spl mu/m) Using a Subwavelength Grating. IEEE Photonics Technology Letters, 16, 1676-1678. http://dx.doi.org/10.1109/LPT.2004.828514
[22] Mateus, C.F.R., Huang, M.C.Y., Deng, Y., Neureuther, A.R. and Chang-Hasnain, C.J. (2004) Ultrabroadband Mirror Using Low-Index Cladded Subwavelength Grating. IEEE Photonics Technology Letters, 16, 518-520. http://dx.doi.org/10.1109/LPT.2003.821258
[23] Magnusson, R. and Shokooh-Saremi, M. (2008) Physical Basis for Wideband Resonant Reflectors. Optics Express, 16, 3456-3462. http://dx.doi.org/10.1364/OE.16.003456
[24] Zhou, Z., Wu, H., Feng, J., Hou, J., Yi, H. and Wang, X. (2010) Silicon Nanophotonic Devices Based on Resonance Enhancement. Journal of Nanophotonics, 4, Article ID: 041001. http://dx.doi.org/10.1117/1.3527260