后退火及NaClO氧化对外延SrCoOx薄膜性质的影响
Effect of Post-Anneal and NaClO Oxidation on the Properties of SrCoOx Epitaxial Thin Films
DOI: 10.12677/APP.2016.610028, PDF, HTML, XML, 下载: 2,058  浏览: 5,910 
作者: 江正华, 史志界, 周 浩, 汤如俊:苏州大学物理与光电•能源学部,江苏 苏州
关键词: SrCoOx薄膜后退火氧化电阻率磁学性质SrCoOx Thin Film Post-Anneal Oxidation Resistivity Magnetic Properties
摘要: 本文采用固相反应法制备了SrCoO2.8块材,又利用脉冲激光沉积技术(PLD)在(001)取向的(LaAlO3)0.3-(SrAl0.5Ta0.5O3)0.7 (LSAT)上制备外延良好的SrCoO2.5薄膜。通过对薄膜微结构和形貌的表征,我们发现后退火和NaClO氧化都能有效地提高薄膜氧含量,但对薄膜的结构有着不同程度的影响。在性质方面,后退火的SrCoOx薄膜是半导体,磁场矫顽力较大;而NaClO氧化后的薄膜表现为金属性,饱和磁化强度明显提高。
Abstract: SrCoO2.8 target was prepared with the conventional solid state reaction method and epitaxial SrCoO2.5 thin films were deposited on (001) (LaAlO3)0.3-(SrAl0.5Ta0.5O3)0.7 (LSAT) substrates by pulsed laser deposition. Through the study of micro structure and pattern of surface, we find that post-anneal and oxidation of NaClO can both effectively improve the oxygen content of SrCoOx thin films, but have different effects on the film structure. When it comes to physical properties, annealed SrCoOx film is a semiconductor and the coercivity is larger than other samples. The sample oxidized by NaClO shows metallic properties and saturation magnetization is improved obviously.
文章引用:江正华, 史志界, 周浩, 汤如俊. 后退火及NaClO氧化对外延SrCoOx薄膜性质的影响[J]. 应用物理, 2016, 6(10): 219-225. http://dx.doi.org/10.12677/APP.2016.610028

参考文献

[1] Muñoz, A., de La Calle, C., Alonso, J.A., Botta, P.M., Pardo, V., Baldomir, D. and Rivas, J. (2008) Crystallographic and Magnetic Structure of SrCoO2.5 Brownmillerite: Neutron Study Coupled with Band-Structure Calculations. Physical Review B, 78, 054404. http://dx.doi.org/10.1103/PhysRevB.78.054404
[2] Aguadero, A., Perez-Coll, D., Alonso, J.A., Skinner, S.J. and Kilner, J. (2012) A New Family of Mo-Doped SrCoO3−δ Perovskites for Application in Reversible Solid State Electrochemical Cells. Chemistry of Materials, 24, 2655-2663. http://dx.doi.org/10.1021/cm300255r
[3] Huang, S., Feng, S., Lu, Q., Li, Y., Wang, H. and Wang, C. (2014) Cerium and Niobium Doped SrCoO3−δ as a Potential Cathode for Intermediate Temperature Solid Oxide Fuel Cells. Journal of Power Sources, 251, 357-362. http://dx.doi.org/10.1016/j.jpowsour.2013.11.096
[4] Jeen, H., Choi, W.S., Freeland, J.W., Ohta, H., Jung, C.U. and Lee, H.N. (2013) Topotactic Phase Transformation of the Brownmillerite SrCoO2.5 to the Perovskite SrCoO3–δ. Advanced Materials, 25, 3651-3656. http://dx.doi.org/10.1002/adma.201300531
[5] Lee, J.H. and Rabe, K.M. (2011) Coupled Magnetic-Ferroelectric Metal-Insulator Transition in Epitaxially Strained SrCoO3 from First Principles. Physical Review Letters, 107, 067601. http://dx.doi.org/10.1103/PhysRevLett.107.067601
[6] Petrie, J.R., Mitra, C., Jeen, H., Choi, W.S., Meyer, T.L., Reboredo, F.A., Lee, H.N., et al. (2016) Strain Control of Oxygen Vacancies in Epitaxial Strontium Cobaltite Films. Advanced Functional Materials, 26, 1564-1570. http://dx.doi.org/10.1002/adfm.201504868
[7] 兰玉岐, 妥万禄, 常爱民, 孙俊菊. SrCoO3–δ陶瓷材料的导电机理和低温热敏特性[J]. 电子元件与材料, 2006, 25(10), 44-46.
[8] Jeen, H., Choi, W.S., Biegalski, M.D., Folkman, C M., Tung, I.C., Fong, D.D., Lee, H.N., et al. (2013) Reversible Redox Reactions in an Epitaxially Stabilized SrCoOx Oxygen Sponge. Nature Materials, 12, 1057-1063. http://dx.doi.org/10.1038/nmat3736
[9] Le Toquin, R., Paulus, W., Cousson, A., Prestipino, C. and Lamberti, C. (2006) Time-Resolved in Situ Studies of Oxygen Intercalation into SrCoO2.5, Performed by Neutron Diffraction and X-Ray Absorption Spectroscopy. Journal of the American Chemical Society, 128, 13161-13174. http://dx.doi.org/10.1021/ja063207m
[10] Ichikawa, N., Iwanowska, M., Kawai, M., Calers, C., Paulus, W. and Shimakawa, Y. (2012) Reduction and Oxidation of SrCoO2.5 Thin Films at Low Temperatures. Dalton Transactions, 41, 10507-10510. http://dx.doi.org/10.1039/c2dt30317e
[11] 顾经伟, 史志界. 后退火对外延 Eu0.5Ba0.5TiO3薄膜表面形貌的影响[J]. 应用物理, 2015, 5(12): 165-171.
[12] Martin, N., Rousselot, C., Rondot, D., Palmino, F. and Mercier, R. (1997) Microstructure Modification of Amorphous Titanium Oxide Thin Films during Annealing Treatment. Thin Solid Films, 300, 113-121. http://dx.doi.org/10.1016/S0040-6090(96)09510-7
[13] Takeda, T., Yamaguchi, Y. and Watanabe, H. (1972) Magnetic Structure of SrCoO2.5. Journal of the Physical Society of Japan, 33, 970-972. http://dx.doi.org/10.1143/JPSJ.33.970
[14] Xie, C.K., Nie, Y.F., Wells, B.O., Budnick, J.I., Hines, W.A. and Dabrowski, B. (2011) Magnetic Phase Separation in SrCoOx (2.5 ≤ x ≤ 3). Applied Physics Letters, 99, 052503. http://dx.doi.org/10.1063/1.3622644
[15] Long, Y., Kaneko, Y., Ishiwata, S., Taguchi, Y. and Tokura, Y. (2011) Synthesis of Cubic SrCoO3 Single Crystal and Its Anisotropic Magnetic and Transport Properties. Journal of Physics: Condensed Matter, 23, 245601. http://dx.doi.org/10.1088/0953-8984/23/24/245601
[16] Choi, W.S., Jeen, H., Lee, J.H., Seo, S.A., Cooper, V.R., Rabe, K.M. and Lee, H.N. (2013) Reversal of the Lattice Structure in SrCoOx Epitaxial Thin Films Studied by Real-Time Optical Spectroscopy and First-Principles Calculations. Physical Review Letters, 111, 097401. http://dx.doi.org/10.1103/PhysRevLett.111.097401
[17] Rueckert, F.J., Nie, Y.F., Abughayada, C., Sabok-Sayr, S.A., Mohottala, H.E., Budnick, J.I., Wells, B.O., et al. (2013) Suppression of Magnetic Phase Separation in Epitaxial SrCoOX Films. Applied Physics Letters, 102, 152402. http://dx.doi.org/10.1063/1.4801646