基于地质力学模型的X气田防砂临界生产压差预测
Predicting the Critical Differential Production Pressure of Sand Prevention for X Gas Field Based on Geomechanics Model
DOI: 10.12677/AG.2016.65041, PDF, HTML, XML, 下载: 1,858  浏览: 3,965 
作者: 赵斌, 张辉, 陈胜:中国石油塔里木油田分公司勘探开发研究院,新疆 库尔勒
关键词: 出砂地质力学临界生产压差Sand Production Geomechanics Critical Differential Production Pressure
摘要: X气田多口气井出砂,为最大限度地消减出砂危害,建立气井防砂地质力学模型,预测气井临界生产压差。X气藏为胶结程度较好的砂岩储层,其破坏机理遵从Griffith准则。依据弹性理论,通过近井地带储层岩石应力分析,导出能够避免气井出砂的最大允许井底流压计算公式。利用测井数据,计算储层不同深度的孔隙压力、主地应力,以及储层岩石的抗拉强度等参数,使用临界生产压差计算公式计算储层不同深度的临界生产压差。考察X气田若干口气井的出砂情况,结果表明当气井实际生产压差小于计算出的临界生产压差时,气井没有出砂;当气井实际生产压差大于计算出的临界生产压差时,气井出砂。该防砂临界生产压差预测方法可有效指导X气田气井工作制度的制定,消减气井出砂危害。
Abstract: Many wells in X gas field produced sand. Geomechanics model was founded and critical differential production pressure was predicted for avoiding the harm induced by sand production. The sandstone in X gas reservoir has a good cementation, and the fracturing mechanism complies with the Griffith criterion. The computational formula of the maximum bottom hole flowing pressure permitted for eliminating sand production was derived through elastic theory and stress analysis of the sandstone around well hole. The pore pressures, principal ground stresses, tensile strength, etc., in different depth of gas reservoir, were calculated by utilizing logging data. And the critical differential production pressures in different depth of gas reservoir were computed with these parameters. The sand production situations of several gas wells in X gas field were investigated, which indicated that the wells would not produce sand while the practical production pressure was less than the critical differential production pressures and the wells would produce sand while the practical production pressure was greater than the critical differential production pressures. The prediction method of the critical differential production pressure for preventing sand production of gas well is capable of guiding the working system of gas wells in X gas field and weakening the harm of sand production.
文章引用:赵斌, 张辉, 陈胜. 基于地质力学模型的X气田防砂临界生产压差预测[J]. 地球科学前沿, 2016, 6(5): 395-401. http://dx.doi.org/10.12677/AG.2016.65041

参考文献

[1] 汪永利, 张保平. Fula油田稠油油藏地层出砂机理实验研究[J]. 石油勘探与开发, 2002, 29(4): 109-110.
[2] 刘先珊, 张林. 持续开采的储层砂岩出砂机理分析[J]. 兰州大学学报(自然科学版), 2013, 49(6): 741-746.
[3] 朱华银, 陈建军, 李江涛, 等. 疏松砂岩气藏出砂机理研究[J]. 天然气地球科学, 2006, 17(3): 296-299.
[4] 徐守余, 王宁. 油层出砂机理研究综述[J]. 新疆地质, 2007, 24(3): 283-286.
[5] Wu, B.S. (2002) Production Prediction of Gas Field-Methodology and Field Application. SPE/ISRM78234.
[6] Dikson, O.U. and David, O.O. (2015) Mchanistic Models for Predicting Sand Production: A Case Study of Niger Delta Wells. SPE-178279-MS.
[7] 钟兵, 马力宁, 杨雅和, 等. 多层组砂岩气藏气井出砂机理及对策研究[J]. 天然气工业, 2004, 24(10): 89-92.
[8] 杨银山, 蓝春连, 宋彦海, 等. 南八仙油田油气层出砂机理认识及出砂预测[J]. 钻采工艺, 2011, 34(5): 52-55.
[9] 刘加元, 刘峰, 高贵洪, 等. 英买力气田群部分井出砂原因分析[J]. 天然气工业, 2008, 28(10): 18-20.
[10] 熊力坤, 陈娟. 疏松砂岩油气藏出砂量预测技术研究进展[J]. 西部探矿工程, 2011(8): 69-71.
[11] 王小鲁, 杨万萍, 严焕德, 等. 疏松砂岩出砂机理与出砂临界压差计算方法[J]. 天然气工业, 2009, 29(7): 72-75.
[12] 夏宏泉, 胡南, 朱荣东. 基于生产压差的深层气层出砂预测[J]. 西南石油大学学报(自然科学版), 2010, 32(6): 79- 83.
[13] 左星, 申军武, 李薇, 等. 油气井出砂预测方法综述[J]. 西部探矿工程, 2006(12): 93, 96.
[14] 刘刚, 刘澎涛, 韩金良, 等. 油井出砂监测技术现状及发展趋势[J]. 科技导报, 2013, 31(25): 75-79.
[15] 胡南, 夏宏泉. 高陡构造异常高压深气层出砂测井预测研究[J]. 测井技术, 2014, 38(5): 617-621.
[16] 肖承文. 塔里木盆地高压气藏出砂测井评价方法研究[J]. 测井技术, 2012, 36(1): 41-45.
[17] 范天佑. 断裂理论基础[M]. 北京: 科学出版社, 2003.
[18] 龙芝辉, 张锦宏. 钻井工程[M]. 北京: 中国石化出版社, 2010.
[19] 马建海, 孙建孟. 用测井资料计算地层应力[J]. 测井技术, 2002, 26(4): 347-351.
[20] 尹帅, 单钰铭, 谢润成, 等. 柯坪塔格组下砂岩段岩石力学参数特征分析及测井解释方法[J]. 科学技术与工程, 2013, 13(26): 7768-7773.
[21] 尹帅, 单钰铭, 王哲, 等. Hoek-Brown准则在岩石抗压强度测井解释中的应用[J]. 桂林理工大学学报, 2014, 34(4): 659-665.