基于层次分析法的浅层地温能适宜性评价分析—以兰州市中心城区为例
Suitability Evaluation of Shallow Geothermal Energy on Analytic Hierarchy Process—As an Example in the Central Urban Area of Lanzhou City
DOI: 10.12677/AG.2016.65043, PDF, HTML, XML, 下载: 1,940  浏览: 6,043  国家科技经费支持
作者: 魏林森, 王婷, 范斌:甘肃省地矿局第二地质矿产勘查院,甘肃 兰州;丁宏伟*, 康亮:甘肃省地质矿产勘查开发局,甘肃 兰州
关键词: 浅层地温能地下水源与土源热泵适宜性划分层次分析法Shallow Geothermal Energy Groundwater and Soil Source Heat Pump Suitability Division Analytic Hierarchy Process (AHP)
摘要: 依据实际勘查资料和测试数据,采用层次分析法所建立的数学评价模型,对兰州市中心城区面积384.7km2的区域进行了浅层地温能适宜性评价分析。浅层地温能适宜性评价体系地下水源热泵共建立了3个属性准则和10个要素指标,土源热泵共建立了3个属性准则和8个要素指标,分别构建了各层次的判断矩阵,并全部高精度通过一致性验证。评价结果,地下水源热泵适宜、较适宜区占调查区总面积的38.99%,主要分布于断陷盆地及黄河黄河I~III级阶地区及和平、定远盆地大部等含水层富水性较好、单井涌水量1000~5000 m3/d、矿化度小于1.0 g/L的地带;土源热泵适宜、较适宜区占调查区总面积的68.57%,主要分布于黄河两岸III~IV级高阶地区与黄土丘陵过度地带及和平、定远盆地等包气带细颗粒地层厚度大于20~40 m、地下水位埋深大于25 m的地带;调查区其余地带不适宜浅层地温能的建设。评价结果对兰州市中心城区浅层地温能的开发利用具有重要的指导作用。
Abstract: Based on the actual survey data and the test data, the shallow geothermal energy of Lanzhou city center (the area of 384.7 km2) is evaluated and classified by the way of analytic hierarchy pro- cess (AHP). In the evaluation system, 3 criteria and 10 indicators are established for underground water source heat pump, 3 criteria and 8 factors for soil source heat pump, all levels of judgment matrix are constructed and precision through consistency checking. The results show that the area of underground water source heat pump suitable and suitable for the survey area with a total area of 38.99%, which mainly distributed in the fault basin, Yellow River level I - III and the large parts basin of Heping and Dingyuan that the water rich water content is better, the single well water inflow 1000 - 5000 m3/d, the mineralization degree is less than 1.0 g/L. The soil source heat pump suitable and suitable areas for 68.57% of the total area of the survey area, which mainly distributed on both sides of the Yellow River level III - IV higher-order region and the Loess Hilly transition zone, Heping and Dingyuan basin, which aeration with fine grain layer thickness is greater than 20 - 40 m, groundwater depth more than 25 m. The rest of the survey area is not suitable for the construction of shallow geothermal energy. The research results have an important guiding role for the development and utilization of shallow geothermal energy in the central urban area of Lanzhou city.
文章引用:魏林森, 丁宏伟, 王婷, 范斌, 康亮. 基于层次分析法的浅层地温能适宜性评价分析—以兰州市中心城区为例[J]. 地球科学前沿, 2016, 6(5): 412-421. http://dx.doi.org/10.12677/AG.2016.65043

参考文献

[1] 廖汉光. 地源热泵在欧美国家的发展概况[J]. 工程建设与设计, 2007, 12(3): 6-10.
[2] 魏林森, 张凌鹏, 王婷. 兰州市浅层地温能调查评价报告[R]. 兰州: 甘肃省地矿局第二地质矿产勘查院, 2013: 10-102.
[3] Saaty, T.L. (1980) The Analytical Hie-rarchy Process. McGraw Hill, New York.
[4] Lulseged, A., Hiromitsu, Y. and Hideaki, M. (2005) Landslides in Sado Island of Japan: Part II. GIS-Based Susceptibility Mapping with Comparisons of Results from Two Methods Verifications. Engineering Geology, 432-445.
[5] 卫万顺, 李宁波, 冉伟彦. 中国浅层地温能资源[M]. 北京: 中国大地出版社, 2010: 30-85.
[6] 卫万顺, 郑桂森, 栾英波. 北京平原区浅层地温场特征及其影响因素研究[J]. 中国地质, 2010, 37(6): 1733-1739.
[7] 栾英波. 浅层地温能资源开发利用发展综述[M]. 地质与勘探, 2013, 49(2): 379-383.
[8] 韩再生, 冉伟彦, 佟红兵. 浅层地热能勘查评价[J]. 中国地质, 2007, 34(6): 1115-1121.
[9] 赵军. 地源热泵技术与建筑节能应用[M]. 北京: 中国建筑工业出版社, 2007: 45-95.