Rayleigh-Benard热对流强化传热技术进展
Heat Transfer Enhancement through Rayleigh-Benard Thermal Convection
DOI: 10.12677/SE.2016.65010, PDF, HTML, XML, 下载: 2,580  浏览: 5,528 
作者: 肖小康, 余同谱, 刘国华:安徽工业大学,能源与环境学院,安徽 马鞍山
关键词: 贝纳德对流湍流强化换热有源法无源法RB Convection Turbulence Heat Transfer Enhancement Active Methods Passive Methods
摘要: 近年来,流动传热在动力、核能、石油化工、航空航天等领域中的应用备受关注,其中Rayleigh-Benard对流成为对流热传输的研究热点,但如何提高其热传输效率是亟待解决的难题。本文针对国内外学者提出的RB对流强化换热技术进行综述,这些技术大致可分为有源强化和无源强化技术。有源强化技术包括加入扰动流体法、垂直旋转轴法、脉冲法;无源强化技术则包括粗糙表面法、分区法、横向限制湍流法。文中将对每种方法的原理、实验手段及其主要结论等进行介绍,并对其典型的工程应用及发展趋势做出展望。本研究对深入认识RB对流传热机理有重要意义,具有较为广泛的工业应用价值。
Abstract: Applications of flow and heat transfer in the power, nuclear power, petrochemical, aerospace and other areas receive great attention in recent years. Among which, Rayleigh-Benard (RB) convection heat transfer has become a hot topic, but how to improve the heat transfer efficiency is a critical issue to be solved. In this paper, the proposed techniques for heat transfer enhancement through RB convection are reviewed. These techniques are divided into active and passive approaches. Active technologies include adding fluid perturbation method, a vertical rotation axis or pulse heating method; passive technologies include using a roughened surface law or partitioned thermal convection methods, horizontal turbulence limit law. We describe the principle of each method, experimental methods and its main results. Typical engineering applications and future prospect are additional targeted for further development. This work is helpful to fully understand the mechanism of heat transfer in RB convections, having obvious significance for extensive industries.
文章引用:肖小康, 余同谱, 刘国华. Rayleigh-Benard热对流强化传热技术进展[J]. 可持续能源, 2016, 6(5): 91-105. http://dx.doi.org/10.12677/SE.2016.65010

参考文献

[1] 余荔, 宁利中, 魏炳乾, 等. Rayleigh-Benard对流及其在工程中的应用[J]. 水资源与水工程学报, 2008, 19(3): 52- 54.
[2] Benard, H. (1900) LES tourbillonscellularies dans une nappe liquid. Rev Gen. Sci. Pure Appl, 11, 1261-1271.
[3] Rayleigh, L. (1916) On Convection Currents in a Horizontal Layer of Fluid When Higher Temperature Is on the under Side. Philosophical Magazine, 32, 529-543.
http://dx.doi.org/10.1080/14786441608635602
[4] Chandrasekhar, S. (1981) Hydrodynamic and Hydromagnetic Stability. Dover, New York.
[5] Drazin, P. and Reid, W.H. (1981) Hydrodynamic Stability. Cambridge University Press, Cambridge.
[6] Heslot, F.B., Castaing, B. and Libchaber, A. (1987) Transition to Turbulence in Helium Gas. Physical Review A, 36, 5870-5873.
http://dx.doi.org/10.1103/PhysRevA.36.5870
[7] Castaing, B., Gunaratne, G., Heslot, F., et al. (1989) Scaling of Hard Thermal Turbulence in Rayleigh-Benard Convection. Fluid Mechanics, 204, 1-30.
http://dx.doi.org/10.1017/S0022112089001643
[8] Sano, M., Wu, X.Z. and Libchaber, A. (1989) Turbulence in Helium-Gas Free-Convection. Physical Review A, 40, 6421-6430.
http://dx.doi.org/10.1103/PhysRevA.40.6421
[9] Siggia, E.D. (1994) High Rayleigh Number Convection. Annual Review of Fluid Mechanics, 26, 137-168.
http://dx.doi.org/10.1146/annurev.fl.26.010194.001033
[10] 王晋军, 夏克青. Rayleigh-Benard湍流对流实验研究进展[J]. 力学进展, 1999, 29(4): 557-566.
[11] 周全, 孙超, 郗恒东, 等. 湍流热对流中的若干问题[J]. 物理, 2007, 36(9): 657-663.
[12] Ahlers, G., Grossmann, S. and Lohse, D. (2009) Heat Transfer and Large Scale Dynamics in Turbulent Rayleigh-Be- nard Convection. Reviews of Modern Physics, 81, 503-537.
http://dx.doi.org/10.1103/RevModPhys.81.503
[13] Lohse, D. and Xia, K.Q. (2010) Small-Scale Properties of Turbulent Rayleigh-Bénard Convection. Annual Review of Fluid Mechanics, 42, 335-364.
http://dx.doi.org/10.1146/annurev.fluid.010908.165152
[14] 林宗虎. 强化传热及其工程应用[M]. 北京: 机械工业出版社, 1987.
[15] 郭照立, 郑楚光. 格子Boltzmann 方法的原理及应用[M]. 北京: 科学出版社, 2009.
[16] 何雅玲, 王勇, 李庆. 格子Boltzmann 方法的理论及应用[M]. 北京: 科学出版社, 2009.
[17] Zhong, J.-Q., Funfschilling, D. and Ahlers, G. (2009) Enhanced Heat Transport by Turbulent Two-Phase Rayleigh- Benard Convection. Physical Review Letters, 102, Article ID: 124501.
http://dx.doi.org/10.1103/physrevlett.102.124501
[18] Biferale, L., Perlekar, P., Sbragaglia, M. and Toschi, F. (2012) Convection in Multiphase Fluid Flows Using Lattice Boltzmann Methods. Physical Review Letters, 108, 2-4.
http://dx.doi.org/10.1103/PhysRevLett.108.104502
[19] Gilman, P.A. (1977) Nonlinear Dynamics of Boussinesq Convection in a Deep Rotating Spherical Shell. Geophysical & Astrophysical Fluid Dynamics, 8, 93-135.
http://dx.doi.org/10.1080/03091927708240373
[20] Julien, K, Legg, S., McWilliams, J. and Werne, J. (1996) Hard Turbulence in Rotating Rayleigh-Benard Convection. Physical Review E, 53, 5557-5560.
http://dx.doi.org/10.1103/PhysRevE.53.R5557
[21] Julien, K., Legg, S., McWilliams, J. and Werne, J. (1996) Rapidly Rotating Turbulent Rayleigh-Benard Convection. Journal of Fluid Mechanics, 322, 243-273.
http://dx.doi.org/10.1017/S0022112096002789
[22] Liu, Y. and Ecke, R.E. (1997) Heat Transport in Turbulent Rayleigh-Benard Convection: Effects of Rotation and Prandtl Number. Physical Review Letters, 79, 2257-2260.
http://dx.doi.org/10.1103/PhysRevLett.79.2257
[23] Aurnou, J.M., Heimpel, M. and Wicht, J. (2007) The Effects of Vigorous Mixing in a Convective Model of Zonal Flow on the Ice Giants. Icarus, 190, 110-126.
http://dx.doi.org/10.1016/j.icarus.2007.02.024
[24] Aurnou, J.M. (2007) Planetary Core Dynamics and Convective Heat Transfer Scaling. Geophysical Astrophysical Fluid Dynamics, 101, 327-345.
http://dx.doi.org/10.1080/03091920701472568
[25] Pallares, J. and Davidso, N.L. (2000) Larg E-Eddy Simulations of Turbulent Flow in a Rotating Square Duct. Physics of Fluids, 12, 2878-2894.
http://dx.doi.org/10.1063/1.1309533
[26] Pallares, J. and Davidson, L. (2002) Large-Eddy Simulations of Turbulent Heat Transfer in a Stationary and Rotating Square Duct. Physics of Fluids, 14, 2804-2816.
http://dx.doi.org/10.1063/1.1489684
[27] King, E.M. and Stellmach, S. (2009) Boundary Layer Control of Rotating Convection Systems. Nature, 457, 301-304.
http://dx.doi.org/10.1038/nature07647
[28] Xiao, L.J. and Xia, K.-Q. (2008) An Experimental Study of Kicked Thermal Turbulence. Cambridge University Press, Cambridge.
[29] Lohse, D. (2000) Periodically Kicked Turbulence. Physical Review E, 62, 4946-4949.
http://dx.doi.org/10.1103/PhysRevE.62.4946
[30] Hooghoudt, J.-O., Lohse, D. and Toschi, F. (2001) Decaying and Kicked Turbulence in a Shell Model. Physics of Fluids, 13, 2013-2018.
http://dx.doi.org/10.1063/1.1375146
[31] Cadot, O., Titon, J.H. and Bonn, D. (2003) Experimental Observation of Resonances in Modulated Turbulence. Journal of Fluid Mechanics, 485, 161-170.
http://dx.doi.org/10.1017/S0022112003004592
[32] Kuczaj, A.K., Geurts, B.J. and Lohse, D. (2006) Response Maxima in Time-Modulated Turbulence: Direct Numerical Simulations. Europhysics Letters, 73, 851-857.
http://dx.doi.org/10.1209/epl/i2005-10486-2
[33] Shang, X.-D., Qiu, X.-L., Tong, P. and Xia, K.Q. (2003) Measured Local Heat Transport in Turbulent Rayleigh-Be- nard Convection. Physical Review Letters, 90, Article ID: 074501.
http://dx.doi.org/10.1103/PhysRevLett.90.074501
[34] Xi, H.-D., Lam, S. and Xia, K.Q. (2004) From Laminar Plumes to Organized Flows: The Onset of Large-Scale Circulation in Turbulent Thermal Convection. Journal of Fluid Mechanics, 503, 47-56.
http://dx.doi.org/10.1017/S0022112004008079
[35] Raupach, M.R., Antonia, R.A. and Rajagopalan, S. (1991) Rough Wall Turbulent Boundary Layers. Applied Mechanics Reviews, 44, 1-25.
http://dx.doi.org/10.1115/1.3119492
[36] Tennekes, H. and Lumley, J.L. (1972) A First Course in Turbulence. MIT Press, Cambridge.
[37] Siggia, E. (1994) High Rayleigh Number Convection. Annual Review of Fluid Mechanics, 26,137-168.
http://dx.doi.org/10.1146/annurev.fl.26.010194.001033
[38] Castaing, B., et al. (1989) Scaling of Hard Thermal Turbulence in Rayleigh-Bénard Convection. Journal of Fluid Mechanics, 204, 1-30.
http://dx.doi.org/10.1017/S0022112089001643
[39] Shraiman, B.I. and Siggia, E.D. (1990) Heat Transport in High-Rayleigh-Number Convection. Physical Review A, 42, 3650-3653.
http://dx.doi.org/10.1103/PhysRevA.42.3650
[40] 李艳霞. 粗糙表面射流冲击复合强化传热实验研究[D]: [硕士学位论文]. 北京: 北京工业大学, 2003.
[41] 张春平. 粗糙度对微细通道内流动与换热特性影响的实验研究和理论分析[D]: [博士学位论文]. 北京: 中国科学院研究生院, 2007.
[42] Du, Y.-B. and Tong, P. (1998) Enhanced Heat Transport in Turbulent Convection over a Rough Surface. Physical Review Letters, 81, 987-990.
http://dx.doi.org/10.1103/PhysRevLett.81.987
[43] Chillà, F. and Schumacher, J. (2012) New Perspectives in Turbulent Rayleigh-Bénard Convection. The European Physical Journal E, 35, 58.
http://dx.doi.org/10.1140/epje/i2012-12058-1
[44] Bao, Y. (2015) Enhanced Heat Transport in Partitioned Thermal Convection. Journal of Fluid Mechanics, 784, R5.
http://dx.doi.org/10.1017/jfm.2015.610
[45] Kaczorowski, M. and Xia, K.Q. (2013) Turbulent Flow in the Bulk of Rayleigh-Bénard Convection: Small-Scale Properties in a Cubic Cell. Journal of Fluid Mechanics, 722, 596-617.
http://dx.doi.org/10.1017/jfm.2013.74
[46] Delaloye, R., Reynard, E., Lambiel, C., et al. (2003) Thermal Anomaly in a Cold Scree Slope (Creux du Van, Switzerland). Proceeding of the 8th lnternati0nal Permafrost Conference, Zurich, 21-25 July 2003, 175-180.