新型环保混合制冷剂R290/R600a的研究进展
The Research Progress of New Environmental Protection Refrigerant Mixture R290/R600a
DOI: 10.12677/JAPC.2016.54011, PDF, HTML, XML, 下载: 1,942  浏览: 5,114 
作者: 曹 睿, 祁影霞:上海理工大学能源与动力工程学院,上海
关键词: R290/R600a制冷剂替代热物性制冷系统 R290/R600a Refrigerant Substitution Thermo-Physical Property Refrigeration System
摘要: 由于现在使用的HFCs制冷剂GWP较高,不符合当前对制冷剂环保性的要求,寻找新型替代制冷剂已迫在眉睫。R290/R600a作为新型环保制冷剂逐渐被人们关注,本文主要概述了混合制冷剂R290/R600a的热物性及制冷研究现状,并与目前常用的R134a进行分析比较,表明了R290/R600a具有替代R134a的潜力。
Abstract: The Global Warming Potential (GWP) of hydrofluorocarbons (HFCs) is usually higher, which can’t meet the current requirements of the refrigerant environmental protection, so finding new alter-native refrigerant is imminent. As the new type of refrigerant, R290/R600a is gradually being concerned. In this paper, the thermal physical properties of the new type of environmentally friendly refrigerant mixture R290/R600a and its refrigeration properties were summarized. It was also compared with the commonly used refrigerant R134a, and it revealed that R290/R600a had the potential to replace R134a.
文章引用:曹睿, 祁影霞. 新型环保混合制冷剂R290/R600a的研究进展[J]. 物理化学进展, 2016, 5(4): 97-104. http://dx.doi.org/10.12677/JAPC.2016.54011

参考文献

[1] 郑东芳, 吴克安, 史婉君, 等. 美国低GWP值制冷剂评估研究最新进展[J]. 制冷与空调, 2014, 14(7): 41-46.
[2] (2014) Regulation (EU) No 517/2014 of the European Parliament and of the Council of 16 April 2014 on Fluorinated Greenhouse Gases and Repealing Regulation (EC), No 842/2006. Official Journal of the European Union, 150, 195- 230.
[3] Leek, T.J. (2010) New High Performance, Low GWP Refrigerants for Stationary AC and Refrigeration. International Refrigeration and Air Conditioning Confe-rence, Purdue University e-Pubs, Purdue.
[4] Adrian, M.B., Joaquin, N.E., Francisco, M., et al. (2016) A Review of Refrigerant R1234ze(E) Recent Investigations. Applied Thermal Engineering, 95, 211-222.
http://dx.doi.org/10.1016/j.applthermaleng.2015.09.055
[5] 汪训昌. 不饱和氟化烯烃及其混合制冷剂应用研究的最近进展与成果[J]. 暖通空调, 2012, 42(4): 1-18.
[6] 邱金友, 张华, 祁影霞, 等. 新型制冷剂R1234ze(E)及其混合工质研究进展[J]. 制冷学报, 2015, 36(3): 9-16.
[7] McLinden, M.O., Kazakov, A.F., Brown, J.S. and Domanski, P.A. (2014) A Thermodynamic Analysis of Refrigerants: Possibilities and Tradeoffs for Low-GWP Refrigerants. International Journal of Refrigeration, 38, 80-92.
http://dx.doi.org/10.1016/j.ijrefrig.2013.09.032
[8] 张朝辉, 陈敬良, 高钰, 等. 制冷空调行业制冷剂替代进程解析[J]. 制冷与空调, 2015, 15(1): 1-8.
[9] Shigeharu, T. and Tomoyuki, H. (2014) Evaluation of Performance of Heat Pump System Using R32 and HFO-Mixed Refrigerant. International Refrigeration and Air Conditioning Conference, Purdue University e-Pubs, Pur-due.
[10] Ankit, S., Samuel, Y.M., Elizabet, V.B., et al. (2014) Low GWP Refrigerants for Air Conditioning Applications. Interna-tional Refrigeration and Air Conditioning Conference, Purdue University e-Pubs, Purdue.
[11] Wang, X. and Amrane, K. (2014) AHRI Low Global Warming Potential Alternative Refrigerants Evaluation Program (Low-GWP AREP)—Summary of Phase 1 Testing Results. International Refrigeration and Air-Conditioning Conference, Paper 1416. http://docs.lib.purdue.edu/iracc/1416
[12] Adrian, M.B., Joaquin, N.E., Angel, B.C., et al. (2015) Analysis Based on EU Regulation No 517/2014 of New HFC/ HFO Mixtures as Alternatives of High GWP Refrigerants in Refrigeration and HVAC Systems. International Journal of Refrigeration, 52, 21-31.
http://dx.doi.org/10.1016/j.ijrefrig.2014.12.021
[13] Zhao, Y.X., Gong, M.Q., Dong, X.Q., et al. (2016) Prediction of Ternary Azeotropic Refrigerants with a Simple Method. Fluid Phase Equilibria, 425, 72-83.
http://dx.doi.org/10.1016/j.fluid.2016.05.010
[14] Peder, B. and Trygve, E. (2016) Reducing the Global Warming Impact of a Household Heat Pump Dishwasher Using Hydrocarbon Refrigerants. Applied Thermal Engineering, 99, 1295-1302.
http://dx.doi.org/10.1016/j.applthermaleng.2016.02.018
[15] Yu, C.-C. and Teng, T.-P. (2014) Retrofit Assessment of Refrige-rator Using Hydrocarbon Refrigerants. Applied Thermal Engineering, 66, 507-518.
http://dx.doi.org/10.1016/j.applthermaleng.2014.02.050
[16] Lee, M.Y., Lee, D.Y. and Kim, Y.C. (2008) Performance Charac-teristics of a Small-Capacity Directly Cooled Refrigerator Using R290/R600a (55/45). International Journal of Refrigeration, 31, 734-741.
http://dx.doi.org/10.1016/j.ijrefrig.2007.11.014
[17] Zhao, Y. and Xi, W. (2013) Retrofits and Options for the Alternatives to HCFC-22. Energy, 59, 1-21.
http://dx.doi.org/10.1016/j.energy.2013.05.065
[18] AIRAH (2013) Flammable Refrigerants-Safety Guide. Melbourne, Aus-tralia.
[19] Ryo, A., Yukihiro, H., Katsuyuki, T., et al. (2007) Vapor-Liquid Equibrium Measurements and Correlations for the Binary Mixture of Difluoromethane + Isobutene and the Ternary Mixture of Propane + Isobutene + Difluoromethane. Fluid Phase Equilibria, 261, 286-291.
http://dx.doi.org/10.1016/j.fluid.2007.06.029
[20] Hu, P., Chen, L.X. and Chen, Z.S. (2012) A Modified Differential-Model for Interaction Parameters in PR EoS with vdW Mixing Rules for Mixtures Containing HFCs and HCs. Fluid Phase Equilibria, 324, 64-69.
http://dx.doi.org/10.1016/j.fluid.2012.03.027
[21] He, M.-G., Song, X.-Z., Liu, H. and Zhang, Y. (2014) Application of Natural Refrigerant Propane and Propane/Isobu- tene in Large Capacity Chest Freezer. Applied Thermal Engineering, 70, 732-736.
http://dx.doi.org/10.1016/j.applthermaleng.2014.05.097
[22] Mohanraj, M., Jayaraj, S., Muraleedharan, C. and Chandrasekar, P. (2009) Experimental Investigation of R290/R600a Mixture as an Alternative to R134a in a Domestic Refrigerator. International Journal of Thermal Sciences, 48, 1036- 1042.
http://dx.doi.org/10.1016/j.ijthermalsci.2008.08.001
[23] Rasti, M., Aghamiri, S.F. and Hatamipour, M.-S. (2013) Energy Efficiency Enhancement of a Domestic Refrigerator Using R436A and R600a as Alternative Refrigerants to R134a. International Journal of Thermal Sciences, 74, 86-94.
http://dx.doi.org/10.1016/j.ijthermalsci.2013.07.009
[24] Rasti, M., Hatamipour, M.S., Aghamiri, S.F. and Tavakoli, M. (2012) Enhancement of Domestic Refrigerator’s Energy Efficiency Index Using a Hydrocarbon Mixture Refrigerant. Measurement, 45, 1807-1813.
http://dx.doi.org/10.1016/j.measurement.2012.04.002
[25] El-Mohamed, M. (2015) Energy and Exergy Analysis of LPG (Li-quefied Petroleum Gas) as a Drop in Replacement for R134a in Domestic Refrigerators. Energy, 86, 344-353.
http://dx.doi.org/10.1016/j.energy.2015.04.035
[26] Fatouh, M. and El Kafafy, M. (2006) Experimental Evaluation of a Domestic Refrigerator Working with LPG. Applied Thermal Engineering, 26, 1593-1603.
http://dx.doi.org/10.1016/j.applthermaleng.2005.11.026
[27] d’Angelo, J.V.H., Aute, V. and Radermacher, R. (2016) Perfor-mance Evaluation of a Vapor Injection Refrigeration System Using Mixture Refrigerant R290/R600a. International Journal of Re-frigeration, 65, 194-208.
http://dx.doi.org/10.1016/j.ijrefrig.2016.01.019
[28] Yan, G., Bai, T. and Yu, J.L. (2016) Thermodynamic Analysis on a Mod-ified Ejector Expansion Refrigeration Cycle with Zeotropic Mixture (R290/R600a) for Freezers. Energy, 95, 144-154.
http://dx.doi.org/10.1016/j.energy.2015.11.067
[29] Yan, G., Hu, H. and Yu, J.L. (2015) Performance Evaluation on an Internal Auto-Cascade Refrigeration Cycle with Mixture Refrigerant R290/R600a. Applied Thermal Engineering, 75, 994-1000.
http://dx.doi.org/10.1016/j.applthermaleng.2014.10.063
[30] Liu, X.Q., Yu, J.L. and Yan, G. (2015) Theoretical Investigation on an Ejector-Expansion Refrigeration Cycle Using Zeotropic Mixture R290/R600a for Applications in Domestic Refrigerator/Freezers. Applied Thermal Engineering, 90, 703-710.
http://dx.doi.org/10.1016/j.applthermaleng.2015.07.069
[31] Araghi, H.A., Khiadania, M. and Hooman, K. (2016) A Novel Vacuum Discharge Thermal Energy Combined Desalination and Power Generation System Utilizing R290/R600a. Energy, 98, 215-224.
http://dx.doi.org/10.1016/j.energy.2016.01.007
[32] 范晓伟, 徐菂, 王方. R744/R290/R600a混合工质热泵循环性能分析[J]. 制冷与空调, 2014, 14(10): 104-108.
[33] Yan, G., Cui, C.F. and Yu, J.L. (2015) Energy and Exergy Analysis of Zeotropic Mixture R290/R600a Vapor-Com- pression Refrigeration Cycle with Separation Condensation. International Journal of Refrigeration, 53, 155-162.
http://dx.doi.org/10.1016/j.ijrefrig.2015.01.007